НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АЗЕРБАЙДЖАНА
АКТУАЛЬНЫЕ НАУЧНО-ТЕОРЕТИЧЕСКИЕ ПРОБЛЕМЫ БОЛЬШИХ ДАННЫХ
Алигулиев Расим М., Гаджирагимова Макруфа Ш., Алиева Айбениз С.

В связи с техническим и технологическим развитием за последние 10 лет в мире были сгенерированы цифровые данные очень больших размеров. На сегодняшний день это превратилось в самую обсуждаемую тему везде, где только возможно: в газетах, журнальных статьях, блогах и т.д. Современному обществу Big Data предоставила новые возможности, а для научных исследователей – проблемы. В отличие от массовых средств информации и сектора бизнеса, в статье термин «Big Data» рассматривается как научно-исследовательский объект. Представляется краткое изложение концепции Big Data. Берутся во внимание основные факторы его развития в роли исследуемого направления. Кроме того, анализируются актуальные научно-теоретические проблемы, которые находятся в центре внимания исследователей. (стр. 37-49)

Ключевые слова:большие данные, аналитика больших данных, аудиоаналитика, видеоаналитика, социальные медиа-аналитика, визуализация, безопасность.
Литература
  • The digital universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. Study report, IDC, November 2014, http://emc.com/leadership/digital-universe/index.htm
  • Diebold F. Big Data Dynamic Factor Models for Macroeconomic Measurement and Forecasting / Discussion Read to the Eighth World Congress of the Econometric Society, Cambridge: Cambridge University Press, 2000, pp. 115-122.
  • Əliquliyev R.M., Hacırəhimova M. Ş. "Big Data" fenomeni: problemlər və imkanlar // İnformasiya texnologiyaları problemləri, 2014, №2, s. 3-16.
  • Big data: The next frontier for innovation, competition, and productivity. Analyst report, McKinsey Global Institute, May 2011, http://www.mckinsey.com
  • Fan J., Han F. & Liu H. Challenges ofBig Data analysis // National Science Review, 2014, vol. 1, no. 2, pp. 293–314.
  • Chen P.L., Zhang C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data // Information Sciences, 2014, vol. 275, pp.314–347.
  • Chen M, Mao S, Liu Y. Big data survey // Mobile Networks and Applications, 2014,vol.19, no.2, pp.171–209.
  • Gandomi A., Haider M. Beyond the hype: Big data concepts, methods, and analytics //International Journal of Information Management, 2015, vol. 35, pp. 137–144.
  • Jina X., Benjamin W. Waha, Chenga X., Wanga Y. Significance and Challenges of Big Data Research, 2015, vol.2, no.2, pp. 59–64.
  • Halevi G. The Evolution of Big Data as a Research and Scientific Topic // Research Trends, 2012, no.30, pp.3-6.
  • Raghavendra K. et.all.The anatomy of big data computing // Software: practice and experience, 2016, no. 46, pp.79–105.
  • Codd E. F. A Relational Model of Data for Large Shared Databanks // Communication ACM, 1970, vol.13, no.6, pp.377-387.
  • DeWitt D., Gray J. Parallel database systems: the future of high performance database systems // Communication ACM, 1992,vol.35, no.6, pp. 85–98.
  • Ghemawat S., Gobioff H. and Leung S.T. The Google File System / Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, New York, USA, October 2003, pp. 29–43.
  • Dean J., Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters / Proceedings of the Sixth Symposium on Operating System Design and Implementation, volume 6 of OSDI ’04, Berkeley, CA, USA, 2004, pp.137–150.
  • Hadoop MapReduce, http://hadoop.apache.org/docs/stable/mapred_tutorial.html
  • Hadoop Distributed File System, http://hadoop.apache.org/docs
  • Diebold F. On the Origin(s) and Development of the Term "Big Data". Pier working paper archive, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, 2012, http://www.ssc.upenn.edu/~fdiebold/papers/paper112/Diebold_pdf
  • Maier M. Towards a Big Data Reference Architecture, 2013, http://www.win.tue.nl/~gfletche/Maier_MSc_thesis.pdf
  • İmamverdiyev Y.N. Big data texnologiyalarının böyük perspektivləri və problemləri // İnformasiya cəmiyyəti problemləri, 2016, №1, s. 23-34.
  • Clifford L. Big data: How do your data grow? // Nature, 2008, vol.455, pp. 28–29.
  • Kaisler S. et.all. Money W. Big Data: issues and challenges moving forward / Proceedings of the 46th Hawaii International Conference on System Sciences, 2013, pp. 995–1004.
  • Tole A.A, et.all. Big Data challenges // Database Systems Journal, 2013, vol. 4, no. 3, pp. 31–40.
  • Laney D. 3D Data Management: Controlling Data Volume, Velocity and Variety. Technical report, META Group, Inc (now Gartner, Inc.), February 2001, http://blogs.gartner.com/doug-laney/files/2012/01
  • Alıquliyev R.M., İsmayılova N.T. Bibliometric Analysis of Big Data Research / “Big data: imkanları, multidissiplinar problemləri və perspektivləri” I respublika elmi-praktiki konfransının əsərləri, Bakı şəhəri, 25 fevral 2016-cı il, səh. 58-60.
  • , TansleyS., Tolle K. (Eds.), The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Corporation, 2009, 287 p.
  • Zhang Y., Zhao Y. Astronomy in the Big Data Era // Data Science Journal, 2015, vol. 14, no.11, pp.1-9.
  • Hays R. R., Daker-W. G. The care.data consensus? A qualitative analysis of opinions expressed on Twitter // BMC Public Health, 2015, vol. 15, no. 838, pp. 2-13.
  • Greene C.S., Tan J., Ung M., Moore J.H., and Cheng C. Big data bioinformatics // Journal of Cellular Physiology, 2014, vol.229, no.12, pp.1896–1900.
  • Wu Z. From Big Data to Data Science: A Multi-disciplinary Perspective // Big Data Research, 2014, vol. 1, p.1.
  • Jagadish H.V. Big Data and Science: Myths and Reality // Big Data Research, 2015, vol. 2, no 2,  49–52.
  • Wu X., Zhu X., Wu G.Q., Ding W. Data mining with bigdata // IEEE Transactionson Knowledge and Data Engineering, 2014, vol.26, no. 1, pp. 97–107.
  • Alguliev R., Aliguliyev R., Hajirahimova M. Multi-document summarization model based on integer linear programming // Intelligent Control and Automation, 2010, vol.1, no.1, pp.105-111.
  • Omar Y.Al-J. et.all. Efficient Machine Learning for Big Data: A Review // Big Data Research, 2015, vol. 2, no. 3, pp. 87–93.
  • Gorodov E., Gubarev V. Analytical Rewiew of Data Visalization Methods in Application to Big Data // Journal of Electrical and Computer Engineering, 2013, 1-7 p.
  • Olshannikova E. all.Visualizing Big Data with augmented and virtual reality: challenges and research agenda//Journal of Big Data, 2015, vol. 2, pp.2-22.
  • Hajirahimova M. Sh., Aliyeva A.S., Review of statistical analysis methods of high-dimensional data // Eastern-European Journal of Enterprise Technologies, Kharkov, 2015, no 5, pp. 23-30.
  • Akerkar Big Data computing. Boca Raton, FL: CRC Press, Taylor&Francis Group, 2013, 562 p.
  • Sun Z., Pambel F., Wang F. Incorporating big data analytics into enterprise information systems, Lecture Notes in Computer Science, 2015, vol. 9357, pp. 300-309.
  • Kambatla K., Kollias G., Kumar V., Grama A. Trends big data analytics// Parallel and Distributed Computing, 2014, vol.74, no.7, pp. 2561-2573.
  • Chun‑Wei Tsai, Chin‑Feng Lai, Han‑Chieh Chao and Athanasios V. Vasilakos, Big data analytics: a survey // Journal of Big Data, 2015, 2(21), 1-32.
  • Jiang J. Information extraction from text. In C. C. Aggarwal, & C. Zhai (Eds.), Mining text data (pp. 11–41). United States: Springer, 2012.
  • Kalampokis E., Tambouris E. and Tarabanis, K. Understanding the Predictive Power of Social Media // Internet Research, 2013, vol. 23, no. 5, pp. 544–559.
  • Barbier, G., & Liu, H. Data mining in social media. In C. C. Aggarwal (Ed.),Social network data analytics, United States: Springer, 2011. pp. 327–352.
  • Pekka P., Pakkala D. Reference Architecture and Classification of Technologies, Products and Services for Big Data Systems // Big Data Research, 2015, vol. 2, no 4, pp.166-186.
  • Клеменков П.А., КузнецовС.Д. Большие данные: современные подходы к хранению и обработке // Труды Института системного программирования РАН, том 23, 2012, с.143-156.
  • Alguliyev R., Imamverdiyev Y. Big Data: Big promises for information security / Proceedings of the IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), Astana, Kazakhstan 15-17 October, 2014, pp. 216–219.
  • Hacırəhimova M., “Big data”texnologiyaları və informasiya təhlükəsizliyi problemləri // İnformasiya texnologiyaları problemləri, 2016, №1, s. 49-56.
  • Lei X., Chunxiao J., Jian W., Jian Y., Yong R., Information Security in Big Data: Privacy and Data Mining // IEEE Access, 2014, vol.2, pp.1149–1176.