
Problems of Information Society, 2022, vol.13, no.2, 38–45

38

Real-time face detection on a Raspberry PI

Leyla G. Muradkhanli1, Eshgin A. Mammadov2

1,2Department of Process Automation Engineering, Baku Higher Oil School, Khojaly ave. 30, AZ1025, Baku, Azerbaijan

1leyla.muradkhanli@bhos.edu.az

orcid.org/0000-0001-6149-4698

A R T I C L E I N F O

http://doi.org/10.25045/jpis.v13.i2.05

A B S T R A C T

Article history:

Received 17 January 2022

Received in revised form

18 Mart 2022

Accepted 06 June 2022

The article describes the implementation of different face detection algorithms to capture

human faces from real-time video frames using a Raspberry PI microprocessor. This article

examines this issue, proposes the implementation of two distinct real-time face detection

algorithms, and presents a comprehensive architectural design. Used methods include Haar

Cascades which is known as Viola-Jones algorithm, and Histogram of Oriented Gradients +

Linear Support Vector Machines algorithm. The algorithms are implemented with the help of

the OpenCV and Dlib libraries, and the Python programming language was used to build the

face detection system. The OpenCV and Dlib libraries include a large number of built-in

packages that assist with face detection and conduct face operations separately, resulting in

reduced processing time and increased efficiency overall. The results confirm that both

methods can detect faces in real time with acceptable accuracy and computation time but there

are several differences. The Histogram of Oriented Gradients + Linear Support Vector

Machines algorithm.method is much more preferable in terms of accuracy, but the image

pyramid construction will be computationally demanding.

Keywords:

Face Detection

Raspberry PI

Histogram of Oriented Gradients

Support Vector Machines

Internet of Things

1. Introduction

Face detection is becoming increasingly important

in creating E-commerce applications, and it is a

critical link in the automatic face recognition system,

which has a broad application situation than the face

recognition system. Furthermore, it is extremely

crucial for applications such as video identification,

content-based retrieval, security systems, etc.

Basically, face detection is the technique of

identifying and locating people in a given scene. The

algorithms that have been presented are primarily

concerned with frontal human faces. For humans, this

is not a difficult assignment to complete because they

are familiar with the appearance of a face because

their brain has been accumulating data since

childhood. However, it is a far more challenging

process for machines to complete this task. The

difficulty is caused by excessive facial expressions,

visual fluctuations in picture and a big region to find

the face in, and so forth. In addition, the retrieved

facial information contains information such as the

size, location, posture, expression, and so on, among

other things. Face detection process, on the other

hand, becomes even more complicated because of

some unstable features, such as glasses and a beard,

which will impact on the detection effectiveness.

Furthermore, various forms and angles of lighting

will cause detecting faces to generate different sorts of

shininess and varied areas of shadows, which will

have an impact on the performance of the face

detection algorithm. The result of the detection

provides face location characteristics, which may be

required in many forms, such as a rectangle

containing the central portion of the face, eye centers,

or landmarks comprising eyes, nose, etc.

In recent years, there has been an increase in the

need for automated surveillance systems. The

development of real-time face detection and

recognition has become a popular study topic.

Optimization of system performance and speed are

the key obstacles in the development of a real-time

automatic face identification system since each

second of live video input involves numerous

activities and processing. There are numerous

methods which are applied for face detection, such as,

SMQT features and SNOW Classifier, Neural

Network based Face Identification, and Support

Vector Machine based face detection. Due to the

computational resources required by these

13 (2)

2022

www.jpis.az

mailto:leyla.muradkhanli@bhos.edu.az
https://orcid.org/0000-0001-6149-4698
http://doi.org/10.25045/jpis.v13.i2.05

Problems of Information Society, 2022, vol.13, no.2, 38–45

39

algorithms, it is relatively simple to implement them

on hardware platforms capable of dealing with large-

scale computations. With the advent of the Internet of

Things, there is an increasing demand for robust and

efficient recognition methods that are based on single

board operating systems. Therefore, the key issue is

to construct facial detection systems on these single

board computers, which have limited processing

resources.

In this research work, the implementation of real-

time face detection is conducted on Raspberry PI

microprocessor. First, several previous experiments

on the topic of face detection are reviewed and

analyzed. Next, the explanation of choosen

methodology is explained. Finally, conducted

experimental results are shown in detail. The face

detection algorithms are modified to take advantage

of the limited processing capacity of the hardware

platform. Since the speed of detection is the major

factor for real-time face detection, two face detection

methods are explored, and a comparative analysis is

done. The first method is the implementation of the

Haar Cascade Classifier based on the OpenCV

library, and the second is Histogram of Oriented

Gradients (HOG) + Linear Support Vector Machines

(SVM) algorithm.using the Dlib library. After testing

both methods on a Raspberry PI board, results show

that algorithms achieve low false positives, and high

true positives and real-time detection performance is

obtained with a satisfactory rate of speed.

Several previous experiments on the topic of face

detection are reviewed and analyzed.

Xin Zhang and Thomas Gonnot (2017) [1] from the

Electrical and Computer Engineering Department of

the Illinois Institute of Technology investigate the

techniques for real-time face identification and

recognition in complex backgrounds that are both

efficient and robust. Throughout the research they

explore several signal processing methods like LBP,

Haar-like feature, and Principal Component

Analysis. Here, a cascade classifier uses the Ada Boost

algorithm to improve the detection performance of

face and eye detectors. Fast face detection is made

possible by the LBP descriptor, which extracts facial

features. The identified facial image is subsequently

processed to adjust the orientation and enhance the

contrast, hence keeping the high accuracy of facial

recognition. Finally, the PCA method is utilized to

recognize faces efficiently. Large databases

containing photos of faces and non-faces are used to

train and evaluate face detection and recognition

algorithms. The aformentioned methodologies are

shown in the below flowchart (fig. 1):

Fig. 1. Real-time face detection and recognition

flowchart

Looking at the results, it is seen that the algorithms

are executed on a computer with a VGA-resolution

Intel Core i7-3537U processor at 2.50 GHz on a single

thread. The processing time to detect each face is 11.4

milliseconds, whereas the processing time to detect

each pair of eyes inside the facial areas is 15.3

milliseconds. The algorithms achieve an overall true-

positive rate of 98.8% for face detection and 99.2% for

correct facial recognition. The main advantage of the

methods used in this research is that very high

detection rate is achieved with minimum

computation time.

Pablo Tribaldos and Juan Serrano-Cuerda

(2013) [2] from the Albacete university has been

offered a computer vision solution for recognizing

people in smart spaces. Their method is applicable to

both visible and infrared images. HOG is employed

for feature extraction in the process of human

detection, whilst for human classification linear SVM

are utilized. The combination of these two methods

allows for highly accurate human detection in both

the visible and infrared spectrums. The HOG

technique extracts feature vectors from the color

images used for training in the suggested databases.

Next, a linear SVM generates a hyperplane capable of

optimally dividing the feature vectors into two

classes. Using the recommended parameters for the

feature detector and selecting a few kernels suited for

Problems of Information Society, 2022, vol.13, no.2, 38–45

40

SVM in the color spectrum, the approach works well

in the visible and infrared spectra, with an accuracy

of 90.33 percent and a recall of 79.86 percent for

automatically annotated images in the spectral

region, and an accuracy of 94.64 percent and a recall

of 96.91 percent for manually labeled infrared images.

After reviewing several scientific papers [3-10] on

the related topic it can be said that the

implementation of real-time face detection systems

becomes challenging in terms of two factors: the

chosen hardware platform and the accuracy and

efficiency of used face detection algorithm. Taking

these factors into account in this research work, two

face detection methods, Haar Cascades and HOG +

Liner SVM implemented in Raspberry Pi

microprocessor since they are suitable for working

with low computation power platforms.

2. Research Methodology

Since the whole project is carried out on Raspberry

PI microprocessor, it is necessary to develop a real-

time face detector, which is fast, less computation

power demanding, and accurate. Taking these factors

into account, two face detection methods are chosen

based on other scientific researches, and here a

detailed explanation of these methods will be

provided.

2.1 HOG + Linear SVM algorithm

The HOG is utilized in this technique for feature

extraction during the process of face detection. On the

other hand, Linear SVM is utilized for the purpose of

face classification. The idea behind HOG is that the

intensity distribution of gradients can be used to

characterize the shape of an object that is present in an

image. This is the core concept behind it. A detector

that is created by utilizing HOG descriptors has the

significant benefit of being invariant to changes in

rotation, translation, scaling, and illumination. This is

a significant advantage. As a result, it is utilized

effectively in photographs taken in the visible

spectrum, as well as in the infrared spectrum.

Following the implementation of HOG descriptors,

SVMs are typically employed for classification. SVMs

are a series of supervised learning methods

developed for both linearly separable and non-

linearly separable data. SVMs are applied to

classification and regression issues in numerous

domains, including text recognition, bioinformatics,

and object recognition. They are also utilized

effectively in the detection of individuals.

The HOG system enables the calculation of the

histogram. In fact, each significant point has its own

HOG feature. Each nearby area is separated into

small chunks known as cells. Within each cell, a local

1-D histogram of gradient patterns is computed for

each pixel. The descriptor is, therefore, the mixture of

all these histograms. Vector gradient is computed in

the following manner:
 𝐺𝑥(𝑥, 𝑦) = 𝐻(𝑥 + 1, 𝑦) − 𝐻(𝑥 − 1, 𝑦)

 𝐺𝑥(𝑥, 𝑦) = 𝐻(𝑥, 𝑦 + 1) − 𝐻(𝑥, 𝑦 − 1)

Here, Gx(x, y) represents the horizontal gradient

of the image pixel, while Gy(x, y) denotes the vertical

gradient. The following equations show the gradient

amplitude and pixel(x, y) direction accordingly:

𝐺(𝑥, 𝑦) = √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2

 𝑎(𝑥, 𝑦) = 𝑡𝑎𝑛−1(
𝐺𝑥(𝑥,𝑦)

𝐺𝑦(𝑥,𝑦)
)

The given frame is subdivided into circular or

rectangular shaped cells of N*N pixels. Also, gradient

feature vectors are produced for each cell (fig. 2).

These vectors are then combined to produce the

feature vector for a particular frame. Lastly, all

gradient feature vectors collected from distinct

images are concatenated to form the HOG feature

vector, a single long vector. The latter will serve as the

input for the SVM classifier.

Fig. 2. HOG feature extraction

An SVM takes the features of two different objects

and searches for a hyperplane that optimally

separates one set of features from the other set of data.

An SVM is designed to maximize the margin of

separation between 2 classes, which results in a

hyperplane with one side including all of the objects

that belong to one class and the other side containing

all of the other objects. Support vectors are the vectors

that are employed in classification, and they are the

vectors that are closest to the margin of separation. In

the circumstance that data are not normalized, the

precision of an SVM could potentially suffer as a

result. Both the degree of input features and the

kernel level are viable options for performing

normalization. In order to complete the classification

task, it is first required to split the data into phases of

training and testing. In the training set, each instance

has a specific value or class label, as well as a sequence

of attributes, such as the observed features. These

attributes are used to train the model. The purpose of

SVMs is to build a model out of training data that can

Problems of Information Society, 2022, vol.13, no.2, 38–45

41

estimate the key parameters of a test dataset based

simply on the attributes of the objects in the test

dataset.

3. Results

As discussed above two main methodologies,

Haar Cascade and HOG + Linear SVM face detection

algorithms will be performed on a Raspberry PI

board. First, general structure of the system will be

shown, and then the setup process in terms of both

hardware and software will be explained and

obtained face detection results will be shown. Lastly,

results will be analyzed and compared for both

methods using relative tables and graphs.

3.1. System design and implementation

As mentioned before, Raspberry PI is selected as a

platform for the implementation of real-time face

detection system. The Raspberry Pi, developed by the

Raspberry Pi Foundation, is a credit card-sized, open-

source, Linux-based computer board. The Raspberry

Pi is an intriguing and accessible way for people of all

ages to improve their computing and programming

skills. The Raspberry Pi can perform many of the

same tasks as a desktop computer, including internet

browsing and video playback, when connected to a

TV or monitor, a keyboard, and when programmed

correctly. Pi is also fantastic for experimenting with

unique projects; the processing capability of newer

models makes them suitable for Internet of Things

projects.

From a wide range of models, Raspberry PI 3

model B+ is selected for the project (fig. 3).

Fig 3. General view of Raspberry PI 3 model B+

This portable microprocessor is a Raspberry pi

board of the third generation, which is quicker than

earlier generations. It is a credit card-sized, low-

cost microcomputer that connects to a computer

display or television and uses a conventional

keyboard and mouse. The specifications of this

board are listed below:

 Broadcom BCM2837B0, Cortex-A53 64-bit

SoC @ 1.4GHz processor;

 1GB LPDDR2 SDRAM, Full size HDMI;

 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac

wireless LAN and Bluetooth 4.2, BLE on

board;

 4 USB 2.0 ports, extended 40-pin GPIO

header

 MIPI CSI camera port for connecting a

Raspberry Camera;

 Micro SD format for loading operating

system and data storage;

 4 pole stereo output and composite video

port.

In order to create a working prototype for the

face detection system, there are some hardware

requirements that are necessary. These components

are listed below:

 Raspberry PI: Model 3B+;

 Raspberry PI Camera module v2;

 16GB MicroSD Card;

 microSD Adapter for pc connection;

 Micro HDMI to HDMI cable;

 LCD monitor;

 Mouse and Keyboard.

The schematic view of connection of these

components are represented in fig. 4.

Fig. 4. Connection of hardware components for

the system

As mentioned previously, for video capturing

external camera module v2 is used. It has a Sony

IMX219 8-megapixel sensor and can be used to

capture both still images and high-definition video.

It is simple to use for beginners, but offers

advanced users a wealth of resources for

expanding their knowledge. There are numerous

examples of its use for time-lapse, slow-motion,

and other video effects on the Internet.

Problems of Information Society, 2022, vol.13, no.2, 38–45

42

Additionally, you can use the included libraries to

create effects.

Once the setup process of hardware parts has

finished, the next step is to create a working

platform. Since the implementation of real-time

face detection system will be build in python

environment, some procedures should be

completed first. The steps for obtaining a working

platform in terms of software phase are listed

below:

Installing the Buster OS to microSD card for

Raspberry pi:

 Updating the System;

 Installing the Dependencies (imutils);

 Installing Python 3;

 Installing OpenCV and Dlib libraries.

The fig. 5 shows the components used in this

project, as well as finished version of the setup

configuration part.

Fig. 5. Experimental setup and hardware

components

3.2. General Architecture

The following flowchart (fig. 6) shows the overall
procedures of created real-time face detection
system. We start by configuring the Raspberry PI
camera and apply RGB to gray conversion when
the camera starts recording. Next, face detection
method is applied, and if face or faces are found in
the detection phase then rectangular box will be
drawn around the face. This process continues until
the program is stopped.

3.3. Testing the camera

Before starting the video capturing, we should

make sure that camera support is enabled for the

Raspberry pi operating system. Camera support

can be enabled from the Raspberry pi software

configuration tool (fig. 7).

Fig. 6. The flow chart of system

Fig. 7. Raspberry pi configuration tool

After successfully configuring the Picam and

starting the video monitoring, it is necessary to

convert the video frame to gray mode, since the

proposed algorithms work with gray mode (fig. 8).

Fig. 8. Picamera video frame in RGB color and

gray modes

Problems of Information Society, 2022, vol.13, no.2, 38–45

43

3.4. Experimental results of Haar Cascades algorithm

Experiment is carried out by using two face

detection methods. First method is Haar Cascades

algorithm. In order to begin training the classifier,

the algorithm requires a significant amount of both

positive (positive data points demonstrate

locations where there is a face) and negative (these

data points are instances of regions without a face.)

images. After that, we will need to derive features

from it. In this step, in order to train the classifer I

used OpenCV Haar training module. It contains a

large number of positive and negative images

which are used to generate a strong classifier for

face detection system and available as XML file

(haarcascade_frontalface_default.xml). After

implementing this pre-trained module to our

python code we can start to test the face detection

system. The following figure (fig. 9) is captured

from the real-time video frame during the

executing of Haar face detector.

Fig. 9. Detected result of Haar face detector

It can also detect faces from a distance (up to 5

meters). Below are the examples of test results for

distance face detection (fig. 10).

Fig. 10. Distance results of Haar face detector

One of the conclusions from the test results is that

covering the eyes and mouth area partially will result

in positive detection, but if one eye region is covered

completely then algorithm will fail to detect face. We

can see this in the following examples (fig. 11).

Fig. 11. Detection results when covering facial

areas partially and completely

In low light conditions, depending on the visibility

of the face, face detection will be either positive or

negative. If most of face is visible, then system will

detect the face.

 Examples are shown below (Fig. 12).

Fig. 12. Haar face detection in low light condition

The face detection system is also able detect not

only one face but multiple faces in a given video

frame. In the next examples we can see the test results

of detection of multiple faces (fig. 13).

Fig. 13. Detection of multiple faces in Haar face

detector

One of the downsides of the Haar face detection

method is that sometimes it draws a rectangle around

nonface areas. It usually happens due to the low light

conditions and distance. Below we can see the

examples of this situation (fig. 14).

Fig. 14. False detection cases of Haar method

Problems of Information Society, 2022, vol.13, no.2, 38–45

44

3.5. Experimental results of HOG + Linear SVM algorithm

The second method used in our face detection

system is the implementation of HOG+ Liner SVM

face detector. The detector is available in the Dlib

library. Davis King initially introduced Dlib as a C++

library for machine learning. Later, however, a

Python API is also created, that can be easily installed

via the “pip” package manager. For the face detection

dlib.get_frontal_face_detector () function is used. This

function does not take any parameters and a call to it

returns the dlib library’s pre-trained HOG + Linear

SVM face detector. Another consideration here is that

after installing both OpenCV and Dlib libraries

through pip package manager conversion of

bounding boxes from dlib to OpenCV should be

implemented, because they are represented in two

libraries differently. In OpenCV, bounding boxes are

represented as a 4-tuple of beginning x-coordinate,

beginning y-coordinate, width, and height, while

Dlib demonstrates bounding boxes through a

rectangle entity with left, top, and right

characteristics. After the conversion of bounding

boxes, implementation of

dlib.get_frontal_face_detector () function in python

script is done and camera is configured for video

monitoring. The system now is ready to detect

faces. The following figure (fig. 15) is captured from

the real-time video frame during the executing of

HOG face detector.

Fig. 15. Detected result of HOG face detector

As for the previous method, this face detector is

also able to detect faces from a distance (fig. 16).

Fig. 16. Distance results of HOG face detector

In low light conditions, detection accuracy is

similar to the Haar face detector. Again depending on

the visibility of face region results will be either

positive or negative. Test results are shown below

(fig. 17).

Fig. 17. HOG face detection in low light condition

Lastly we can test whether this face detector can

detect multiple faces or not. Results show that

algorithm is able to spot multiple faces from video

frame with good detection accuracy. The test results

are shown in the below figure (fig. 18).

Fig. 18. Detection of multiple faces in HOG face

detector

3.6 Comparison of face detection methods

After implementing both face detection

algorithms, it is possible to make some conclusions

regarding their performance, detection accuracy, etc.

In table 1, we can see the detection accuracy, average

fps count and detection speed of both methods. It can

be seen that in terms of accuracy HOG face detection

outperforms Haar face detector averaging 95%

accuracy rate. However, in performance factors, the

Haar face detection method obtains higher scores,

resulting 2 times more fps count and 4 times faster

face detection speed.

Table 1. Analysis of used face detection methods

Face

detection

method

Face

detection

accuracy

Average

frame per

second (FPS)

Face detection

speed

(millisecond)

Haar

Cascade
~90% 15 fps ~175 ms

HOG

+Linear

SVM

~95% 7 fps ~740 ms

Problems of Information Society, 2022, vol.13, no.2, 38–45

45

From the observed results some advantages and

disadvantages of both methods can be mentioned.

The pros of the Haar Cascade method are that it is

extremely fast and able to run in real-time and also it

has minimum requirements in terms of

computational power, therefore it is possible to

implement it in devices with limited resources, such

as the Raspberry Pi. However, it is extremely

susceptible to false-positive detections which is the

main disadvantage.

In case of HOG + Linear SVM method, it can be

said that higher accuracy and stability are main

advantages of this face detection system. However,

it just functions on frontal viewpoints of the face; it

will not any profile faces because the HOG

descriptor is sensitive to rotation and viewing

angle changes. Also, due to image pyramid

formation and sliding windows, it is actually

extremely computationally demanding.

4. Conclusion

In this article, implementation of real-time face

detection system was experimented on a Raspberry

Pi platform. The proposed methodologies were

determined after analyzing and taking the main

pinpoints of previously conducted researches and

experiments based on the actual topic. Two factors

were essential in choosing the above discussed

algorithms. One reason is that since the working

hardware platform is Raspberry Pi microprocessor,

the computational requirements of these platforms

must be taken into account. Another reason is the

detection accuracy factor of the choosen method and

performance characteristics of it. In this regard, Haar

Cascade and HOG +Linear SVM methods were

explored to build the robust and accurate real-time

face detection system. Experiments were conducted

on Raspberry Pi 3 model B+ board which had a decent

CPU power. During the process real-time video

footage captured the faces and based on the used

algorithmic method detection was carried out in

certain speed and accuracy. Testing of face detection

process were conducted in various conditions,

including low light environments, in cases when

certain areas of face were covered, distance

monitoring, and also situations where multiple faces

were present in a video frame.

Overall, all the experiments were successful for both

methods, but there were several differences in terms

of detection accuracy, detection speed and frame

count per second. To explain in more detail, the HOG

face detection method was the most accurate one

between the two, detecting faces with up tp 95%

accuracy, while the Haar face detector achieved a

score of 90%. Also false positive rate was minimal for

this face detector, meaning that the algorithm was

much more stable than the other one. However, the

Haar face detection method was superior in terms of

performance measures. With average 15 frame counts

per second and 175 ms detection speed, the Haar face

detector outperformed the other HOG face detector 2

times and 4 times, respectively.

References

1. Xin, Zhang, Thomas, Gonnot. (2017). Real-Time Face Detection

and Recognition in Complex Background. Journal of Signal and

Information Processing , 8(2), 1-5.

2. Pablo, Tribaldos, Juan, Serrano-Cuerda. (2013). People

Detection in Color and Infrared Video Using HOG and Linear

SVM, 1-10. https://www.semanticscholar.org/paper/People-

Detection-in-Color-and-Infrared-Video-Using-Tribaldos-

Serrano-Cuerda/c933c4bef57be3585abb13bacb74aca29588a6ac

3. Jyotirmaya, Ijaradar, Jinjing, Xu. (2022) . A Cost-efficient Real-

time Security Surveillance System Based on Facial Recognition

Using Raspberry Pi and OpenCV. Current Journal of Applied

Science and Technology, 41(5), 1-12.

4. Klaus, Kollreider, Hartwi, Fronthaler. (2008). Real-Time Face

Detection and Motion Analysis with Application in “Liveness”

Assessment. IEEE Transactions on Information Forensics and

Security, 2(3), 548 – 558.

5. Yi-Qing Wang. (2014). An Analysis of the Viola-Jones Face

Detection Algorithm. Image Processing On Line, 4, 128-148.

6. Daniel Hefenbrock, Jason Oberg. (2010). Accelerating Viola-

Jones Face Detection to FPGA-Level using GPUs. IEEE Xplore .

Conference: Field-Programmable Custom Computing

Machines (FCCM), 2010 18th IEEE Annual International

Symposium on 11-17.

7. Haoxiang Li, Zhe Lin. (2015). A Convolutional Neural

Network Cascade for Face Detection. IEEE Explore, 1-10.

8. Li Cuimei1, Qi Zhiliang. (2017). Human face detection

algorithm via Haar cascade classifier combined with three

additional classifiers. International Conference on Electronic

Measurement and Instruments, ICEMI, IEEE.

9. José Ignacio Rodríguez Molano. (2015). Internet of Things: A

Prototype Architecture Using a Raspberry Pi. Lecture Notes in

Business Information Processing, 224, 618-631.

10. Junjie Yan, Xuzong Zhang (2013). Face detection by structural

models. Image and Vision Computing, Elsevier, 1-10.

https://www.scirp.org/journal/journalarticles.aspx?journalid=339
https://www.scirp.org/journal/journalarticles.aspx?journalid=339
https://www.researchgate.net/journal/Image-Processing-On-Line-2105-1232
https://www.researchgate.net/deref/http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2Ffreeabs_all.jsp%3Farnumber%3D5474075

