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The current frontiers in the description and simulation of advanced physical and biological 

phenomena observed within all scientific disciplines are pointing toward the importance of the 

development of robust mathematical descriptions that are error resilient. Complexity research is 

lacking deeper knowledge of the design methodology of processes that are capable to recreate the 

robustness, which is going to be studied on massive-parallel computations (MPCs) implemented 

by cellular automata (CA). A simple, two-state cellular automaton having an extremely simple 

updating rule, which was created by John H. Conway called the ’Game of Life’ (GoL) is applied to 

simulate and logic gate using emergents. This is followed by simulations of a robust, generalized 

GoL, which works with nine states instead of two, that is called R-GoL (open-source). extra states 

enable higher intercellular communication. The logic gate is simulated by the GoL. It is destroyed 

by injection of random faulty evaluations with even the smallest probability. The simulations of 

the R-GoL are initiated with random values. several types of emergent structures, which are robust 

to injection of random errors, are observed for different setups of the R-GoL rule. The GoL is not 

robust. The R-GoL is capable to create and maintain oscillating, emergent structures that are robust 

under constant injection of random, faulty evaluations with up to 1% of errors. The R-GoL express 

long-range synchronization, which is together with robustness facilitated by designed intercellular 

communication. 
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1. Introduction 

The main goal of this study is to open novel 

research vistas. The current computers and 

computational methods applied in science and 

technology are employing sophisticated approaches 

that are not computationally robust (error-resistant). 

Contrary to biological systems, which are all 

working with robust emergents. The expected 

outcome of this study is to explore uncharted areas 

of complex systems (CSs), which will eventually 

lead to robust computers and computational 

methods. Such methods are studied on a specific 

class of cellular automata (CA), where robustness of 

emergent structures is clearly demonstrated. The 

emergents generated by the ‘Game of Life’ (GoL) 

will be shown not to be error resilient. The 

generalized, robust GoL will demonstrate to 

maintain emergents despite the injection of 1% of 

random evaluation errors. In the rest of the 

introduction, the relevant information about CSs is 

briefly overviewed.  
Why are complex systems important? The 

current understanding of information processing, 

which is observed within a wide range of natural 

phenomena, that are operating within non-living 

and living systems, is directly pointing towards the 

presence of massive-parallel computations (MPCs) 

that are operating within those systems. Despite 

the fact that various MPCs are observed within 

completely different media, based on different 

physical and biochemical processes, they possess 

common features. MPCs and their information 

processing are naturally calling for CSs 
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descriptions, as those provide the most suitable 

toolkit capable to describe and predict behavior of 

such phenomena. MPCs-based models are creating 

a subset of all CSs models. 
CS-models are having the potential to 

computationally describe all naturally observed 

phenomena that express: self-organization, 

emergence, self-replication [1, 2], self-repair (aka 

healing), and many other phenomena. 

Additionally, CS based descriptions provide means 

to experiment with various potentially harmful 

scenarios that cannot be tested in reality (as in 

many social, biological, and biomedical 

applications). This can help to develop both still 

lacking and needed future theories of CSs, and 

simultaneously, safely explore ethically forbidden 

areas of experimental research. 
What are the means of CSs description? The 

scientific area dealing with mathematical and 

computational descriptions of CSs is undergoing a 

constant, often explosive development with many 

open, challenging frontiers spanning across all 

scientific disciplines. We know that step-by-step 

development of applied mathematical descriptions 

is constantly pushing the envelope of our 

descriptive capabilities outwards into the 

unknown. The multidisciplinary nature of CS 

research unavoidably raises the confusion and 

inability of researchers originating within different 

research areas to find efficient communication 

means, as the fields are constantly morphing.   
Hence, there is a need to periodically review 

those novel achievements by distilling them across 

all scientific disciplines. Those reviews of theoretical 

and computational tools can be easily applied within 

all other disciplines. Such cross-fertilization of 

disciplines can be achieved by defining the common 

ground to all of them. The best known, highly-

recommendable tool providing such common 

ground is provided by CA [3-7] and their movable 

counterpart that are called agent-based models 

(ABM) [8].  
Currently there are existing several generic 

computational methods applied to the description of 

CSs phenomena along with many of their variants 

that are known under various names, see Table 1: 
 

Table 1: A brief list of existing generic classes of descriptive methods used to quantitatively and qualitatively study complex 

systems [5]. 

Method Name Brief Description References 

CA: cellular automaton 
A lattice of constituting elements (cells) that are interacting with their neighbors 

according to a common evolution rule. 

Illachinsky, 2001; 

Kroc et al. 2019 

ABM: agent-based model Same as above with moving agents instead of fixed automata. Illachinsky, 2004 

CSM: complex systems measure 
CSMs are utilizing the concept of Boltzmann's and Shannon's entropies and 

their generalizations. 
Kroc et al., 2020 

SM: statistical method Simple and advanced statistical methods. Kroc et al., 2020 

ML: machine learning 
ML methods often take features, which are distilled from the original CS system 

using SM, as the input. 
Kroc et al., 2020 

AI: artificial intelligence Incorporate neuronal networks, other perceptors, and ML. Kroc et al., 2020 

All those methods are applying various 

approaches. Both, CAs and ABM methods apply a 

simple approach that is based on utilization of local, 

mutual interactions of their low-level, systemic, 

constituting elements with a restricted number of 

their neighbors according to a uniform set of 

interaction rules. Some mentioned methods' features 

can be generalized in advanced approaches. CA 

work above a fixed lattice of their constituting 

elements (called cells) whereas ABM work with 

movable constituting elements (called agents). 
Statistical methods (SM) alone are typically 

found insufficient in description and capturing the 

basic properties of complex systems; nevertheless, 

they are often providing valuable features used as 

inputs to artificial intelligence (AI) and machine 

learning methods (ML) methods. Finally, complex 

systems measures (CSM) have the capability to 

capture subtle trends, which are operating inside of 

huge complex systems, that are otherwise 

inaccessible to simple and advanced SMs. 
AI & ML methods are possessing the capability 

to discern even more details within CSs, which are 

either measured by SMs or CSMs. The major 

disadvantage of AI & ML methods is laying in the 

fact that in the majority of cases they are utilizing 

black-box methods that are lacking human 

interpretable forms.   
Hidden history of CSs descriptions. The latest 

CSs descriptions are standing on the shoulders of 

their older, successful predecessors developed in 

physics & mathematics: dynamical systems, 
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synergetics, statistical physics, and fractal theory. The 

early beginning of CSs are associated with the 

development of dynamical systems, which had been 

initiated by the three-body problem in the celestial 

mechanics of by gravity bound bodies, that was 

defined and theoretically studied by Henry Poincaré 

in the end of the 19th century. This research clearly 

demonstrated that movements of three and more 

celestial bodies described by deterministic equations 

acquire long-term, unpredictable trajectories. Even 

the slightest change in the initial conditions leads to a 

dramatic change in the future paths of the involved 

bodies. As another example, later in 50s of the 20th 

century the Lorenz weather model [9] demonstrated 

its extreme sensitivity to the initial conditions that 

yielded the term ‘butterfly-effect’. Both approaches 

led to a development of dynamic systems theory (DS) 

and relevant numerical methods. 

Going back in time, yet another stream of 

thoughts that eventually led to the foundation of 

CSs theory appeared in the Boltzmann theory of 

gases—developed around the mid of the 19th 

century—, which founded the statistical physics 

and the notion of entropy. Later, entropy becomes 

the fundamental tool in measuring CSs properties. 

Boltzmann's approach stirred the contemporary 

establishment within physics because it, for the first 

time, had proven that a set of fully 

deterministically defined movements of systemic 

parts (atoms) produce unpredictable statistical 

behavior of said atoms, which went against one of 

the main physics’ dogmas. Simultaneously, 

Boltzmann’s approach led to the development of 

the mathematical description of entropy as the 

notion dealing with unavailable energy [10, 11, 12, 

13] that was later generalized by Shannon [14, 15] 

within the scope of information theory.  

Both streams of thought and theories eventually 

led to our current understanding of CSs descriptions, 

which are representing a vital paradigm, that are very 

suitable and sufficiently flexible to describe natural 

phenomena observed within the whole spectrum of 

scientific fields. The onset of the massive use of 

personal computers enabled every researcher to 

employ CS-models in his own research. 
Importance of Complex Systems in Biology. CSs 

had been demonstrating their usefulness in 

description of fairly complex phenomena observed in 

biology—and consequently in medicine—that all was 

accomplished using relatively simple models. Those 

models require preliminary knowledge of complex 

systems modeling. Therefore, there is a need to start 

with some simple, prototype model, which is easy to 

grasp, that simplify understanding of all modeling 

steps: design, algorithm, programming, and refining 

of all the previous steps until success is reached. See 

the GoL cellular automaton discussed in this text [16, 

17], which is expressing emergent behavior, as such 

prototypical example. After digesting all necessary 

steps in the CS-model's design, it becomes much 

easier to understand and design more complicated 

CS-models. 
Why are CSs better in the description of 

biological phenomena? CSs posses several key 

features that are providing biological models 

formulated by them crucial advantages in 

comparison to other descriptive approaches (like 

differential equations, or statistics- and probability-

based ones). Those advantages are massive 

parallelism, independence of their constituting 

parts, locality of mutual interactions of constituting 

parts, local information storage, and uniform 

evolving/updating rule through the whole system, 

see e.g. [18] for real biological and physical 

examples.  Simultaneously, we know that many of 

currently used CS-models are unable to reproduce 

robustness of biological systems, it means, their 

ability to resist perturbations and the capability to 

recover from them. This task is going to be 

addressed in the second method of this paper. 
We know that in many situations, CSs and MPC 

models are the only way to model biological 

phenomena. Examples encompass ecosystems, 

immune system, cytoskeleton and exoskeleton of the 

cells, tissues, morphological growth (tooth, skin), and 

many other [5].  
The paper outline. The introduction describes 

CSs, their history, and their importance in biology. 

The introduction into CAs follows. Two methods are 

defined: the GoL, and its generalized, robust GoL (r-

GoL) variant. This is followed by results, which 

presents the GoL simulation of AND logic gate using 

emergents, its by-errors destroyed variant, and three 

r-GoL simulations with different levels of injected 

errors, where emergents are demonstrated to be 

resilient against injection of errors. All is finalized by 

the conclusion. 

2. Cellular automata 

Cellular Automata (CAs) play the prototyping 

role within CSs modeling. CAs are operating above 

a lattice of elements (squares, triangles, and hexagons 

in 2D; cubes in 3D) that are called cells. Each cell has 

a list of its close neighbors, which total number is 

much lower than the total number of cells, that is 

uniform throughout the whole lattice. Cells are 

updated synchronously according to the identical 
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rule that defines the state(s) of the cell in the next step.  
Despite the simplicity of this computational ap-

proach, there is existing the endless complexity 

within it. Actually, when a CA-model of natural 

phenomena is designed, the author of it usually 

face the problem of excessively wild behavior of the 

CA-model until all settles down to the final version 

of the model that becomes more nicely ‘behaving’ 

[4]. This effect is well-known to all CA modelers 

and is caused by the tendency of CA-models to be-

come chaotic. Roughly said, it is known that com-

plex rules of CA are located somewhere between 

the periodic behavior and chaotic one. 
The expressiveness of the CAs approach is so high 

that it is known that most of, if not all, computable 

systems can be described using CAs. This had been 

proven in the ‘Game of Life’ [16, 17], which can 

principally simulate anything that we are currently 

able to compute by current computers [19]. See the 

animation of AND logic gate using glider guns 

emitting colliding streams of gliders, which is 

provided at the software [20, 21, 22] and snapshots in 

Fig. 1. Similarly, OR and NOT logic gates can be 

emulated in the GoL, see animations in [20] and links 

there. To provide an example of the flexibility of the 

CA method, the evaluation of partial differential 

equations where a differentiation scheme is 

implemented by a rule within a CA is shown in [23, 24].  

Fig. 1. A sequence of snapshots, which is depicting the AND logic gate, that is taken at steps 0, 10, 49, 88, 200, 

and 300. Animations of AND, OR, and NOT logic gates are available at the link [20], and related data. 

3. Methods 

Two methods had been studied in this paper: 

the ‘Game of Life’, called GoL, cellular automaton 

employing massively parallel, emergent 

computations, and its robust generalization called 

r-GoL (robust GoL) which emergents wisthand 

injection of faulty evaluations. 

3.1 Method of John H. Conway's 'Game 

John Horton Conway created a simple CS model 

of alive-like entities called the ‘Game of Life’ (GoL)– 

(sometimes called simply as ‘Life’), which is imple-

mented using a CA, that led mathematicians and 

computer enthusiasts to endless studies of complex-

ity arising from simplicity. The GoL works above a 

two-dimensional lattice of squares with periodic 

boundary conditions (left and right edges, and top 

and down are connected) where each cell updates its 

own state according to the states of its eight neigh-

bors and itself. Only the total number of alive neigh-

bors is counted, which is inserted into the updating 

rule; hence, it is called the totalistic rule. The GoL has 

only two states: alive (one, black) and dead (zero, 

white). The number of cells within its neighborhood 

in the state of one is counted, and the following rule 

is applied [20], see Table 2. Different cases of the rule 

can be related to survival (I.a & I.b), the birth of new 

life (II.), and death due to insufficient cooperation 
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(III.a) and overpopulation (III.b). Surprisingly, such 

a very simple rule is providing means to create very 

complex emergent structures within the simulated 

lattice. 

Table 2: A list of all inputs that are affecting the evolution of each cell's state within the lattice in the GoL is provided bellow along 

with their biological interpretation. This rule is having just the right combination of survival and birth rates to express complex 

behavior [20]. 
 

Case Input configuration Output value Biological interpretation 

I.a cell(t) = 1 & neighbors = 2 cell(t+1) = 1 surviving 

I.b cell(t) = 1 & neighbors = 3 cell(t+1) = 1 surviving 

II. cell(t) = 0 & neighbors = 3 cell(t+1) = 1 birth 

III.a neighbors <= 2 (except the Case I.a) cell(t+1) = 0 death, insufficient cooperation 

III.b neighbors > 3 cell(t+1) = 0 death, overpopulation 

3.2 Method of robust generalization of the ‘Game of Life’: r-

GoL 

As will be shown, the GoL is not robust due to its 

extreme sensitivity to random noise. One of the 

possible lines of attack to make it more robust is to 

increase the number of cell states from two to some 

higher value. It was decided to use ten states (0, 1, 2, 

…, 9) as they can be equally spread among the cell 

and its eight neighbors, which brings a higher 

flexibility into the CA-rule governing the evolution. 

Changes of the CA-rule are summarized in the 

following list:  

 The state of each cell is laying within the 

interval <0, 9>. The zero value is expected as the 

ground state, which is followed by nine higher 

levels of excitation. 

 A threshold that is stating the value above 

which the cell becomes alive is defined as TA . 

 A threshold that represents silencing of an 

overexcited cell is defined as TD. 
 

When those generalizations are implemented 

into the GoL, an improved, more robust algorithm is 

defined that is called the r-GoL, see Algorithm 1 [27].  
 

neighbor_Alive() 
    counting alive neighbors within Moore neighborhood 

using thresholds TA , TD  
 

if neighbor_Alive() == 3 
    cell = 9 
else if (neighbor_Alive() == 2) and (cell >= 

lower_threshold) and (cell <= upper_threshold) 
    cell = 9 
else 
    if (rand_number() < 0.01) ### Random Swapping of 

cell's value with p = 0.01 
           cell = 5 
       else  

           cell = 0 

Algorithm 1: The algorithm of the r-GoL is 

working with 10 states. A not shown sub-step 

applying the distribution of states to neighboring 

cells from an excited cell is applied just right before 

the sub-step shown here, which is applying the r-

GoL algorithm (TA = lower_threshold; TD = 

upper_threshold). When random noise having the 

probability of 0.01% or 1% is introduced, see Figs. 5 

and 6, or 7 and 8, respectively. Without this noise, 

see Figs. 3 and 4.  

4. Results and discussion 

Both methods had been tested and evaluated as 

documented in this section. Robustness of 

emergent structures observed within r-GoL is 

clearly demonstrated, see the open-source codes 

and animations of both algorithms in [20,27].  

4.1 John H. Conway's 'Game of Life' 

During over 50 years of studies, a plethora of 

emergent structures was discovered [25]: gliders, 

glider guns, ships, blinkers, eaters, and logic 

operations such as AND, NOT, OR, NAND, etc. [20].  
The GoL was proved to be Turing equivalent 

[19]. In other words, it is proven that the GoL is 

capable to evaluate all that is computable by Turing 

machine (current von Neumann architecture based 

computers). In theory, it is possible to build a whole 

computer within the GoL using the above AND, OR, 

and NOT logic gates where gliders serve as 

‘electrons’ that carry on bitwise information: the 

presence of a glider is equal to the state one, and its 

absence is equal to the state zero. There are attempts 

to recreate a processor using the GoL logic gates 

based on glider guns and gliders, see e.g. [26]. 
Emergent structures. Emergents in one or other 

form are operating in the majority of observed 

natural phenomena. Nevertheless, most of us are 
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unaware of them. A list of simple examples of 

emergents encompass temperature and pressure of 

gases & liquids, physical properties of crystalline 

structures as strength, properties of proteins and 

other bio-structures, cells, tissues, organs, bodies, 

ant & insect colonies, societies, and ecosystems. 
To become familiar with emergents, to raise our 

own capability of their detection in any observed 

natural phenomenon, we need both generic 

examples and understanding of their ways of 

becoming into the existence. Both aspects are 

provided by the GoL. By studying, playing with, 

and modifying the GoL, everyone can gain insights 

into the generation of emergent structures, use the 

open-source Python software [20]. 
This contribution helps to start to uncover the 

beauty of emergent structures that are existing and 

operating in virtual environments, arising from and 

through mutual interactions of large numbers of 

simple processes that are storing information locally. 

Emergents are arising from two opposite processes: 

creation, and destruction, or multiplication and 

erasing, respectively. Only when those opposing 

processes are balanced, they give rise to emergents.  
The GoL create new living cells only when there 

are three alive cells around a dead one. When there 

are more alive cells, the cell stay or become dead. It 

is caused by the competition for resources due to 

overcrowding. Alternatively, when there are two 

or less alive cells in the neighborhood, the cell will 

stay or become dead; with a single exception: an 

alive cell having two alive neighbors stay alive. 

This is caused by lack of cooperation among 

neighboring cells. 
Only when this subtle balance between creation 

and destruction is maintained in the whole system, 

emergents are created and sustained. Each emergent in 

the GoL has a topology, which is the key to its survival. 

Only certain topologies can survive indefinitely unless 

they get disrupted. 
Effects of random Errors. Let us check the effect of 

random errors on the stability of the simulation when 

they are present in the evaluation of the GoL-rule 

with a certain probability. Even introduction of errors 

with as minuscule probability as p ≈ 0.0001 are 

leading to a quick destruction of all emergents, see 

Fig. 2. Obviously, larger emergent structures are 

destroyed faster because the probability of a structure 

being affected by a random error roughly increases 

with the square of the structure's linear size. 

Fig. 2. The identical initial configuration of AND logic gate as in Fig. 1 is simulated with randomly occurring 

faulty evaluations (swaps). A randomly chosen cell with the probability p = 0.0001 get reversed its value. The 

sequence of snapshots taken at steps 0, 10, 49, 88, 200, and 300 that are depicting a glider gun emitting 

gliders, which are quickly disrupted and destroyed, see videos [20]. 
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The random errors were created in the following 

way. A cell gets randomly swapped its value with a 

certain probability p, the evolution of the same initial 

topology as used in Fig. 1 was carried on and 

compared to the undisrupted GoL simulation. With 

decreasing probability p (0.1, 0.01, 0.001, and 0.0001), 

the effect of disruption of the GoL evolution gets only 

postponed to a more distant moment. Nevertheless, 

all simulations get disrupted even with the smallest p 

values. This brings us to the notion of robustness.  

Robustness. In the previous section, we clearly 

demonstrated that the GoL posses an extremely low 

robustness against random disruptions realized by 

swapping of cells' value. By robustness, it is 

understood the ability of the simulation to recover 

from random changes of cells' values. A simulation 

expressing zero robustness is unable to recover from 

even a single random state change within emergents, 

which leads to the disappearance of those structures. 

Hence, every computation based on the GoL or 

a similar type of simulations must be from the 

principle error free; otherwise, such simulations get 

easily disrupted and emergents are lost. This 

property of the GoL is rising a natural question: 

“Are there existing rules that lead to robust GoL-

like simulations?” Let us look in this direction and 

explore rules that can be observed in physical and 

biological systems, which are both expressing 

robustness. 

4.2 Results of robust generalization of 'Game of Life’: r-

GoL 

During simulation of the r-GoL from a random 

initial condition, various static and oscillating 

structures having the period of two (blinkers) 

emerges/evolves after some transition period. The 

topology and behavior of those emergent 

structures differ from the original GoL 

substantially. Blinkers are existing within corralled 

regions where alternating patterns of equidistant 

points along with various alternating emergent 

structures called arrows are observed, see Figs. 3 

and 4. Similar structures can be seen in Figs. 5-8. All 

emergents became persistent when the corral is 

stable, unless it gets disrupted by neighboring 

structures. All emergents arise quite naturally in 

the r-GoL simulations. Surprisingly, emergents are 

abundant. Moving structures or gliders were not 

observed; their potential existence is unknown at 

this moment. 

It was observed that structures initiate their 

growth from the initial random configuration, 

followed by the growth phase, reach their maximal 

span, and then when they have an imperfect 

boundary called the corral, they shrink. Stability of 

all of those domains is defined by the stability of 

their boundaries. It is possible to manually define 

stable boundaries with its content (not done in this 

study). The spacing of alternating points within the 

stable domains is 2 cells horizontally and 2 cells 

vertically.  

 

Fig. 3. A sequence of snapshots (left-right, top-down, same in all pictures) depicting the evolution of the 

random initial condition (random gen. PCG64(124)) as it progresses into a set of stable corralled domains of 

alternating patterns: points and arrows. Snapshots are taken at the times: 0, 35, 36, 100, 101, and 185, see [27].  
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Fig. 4. Snapshots of the diffusion patterns evolution are shown for the identical initial  

conditions and times as in Fig. 3. Displayed sub-figures correspond one-to-one in both figures, see [27]. 

 
As already said, all large alternating structures 

are corralled. All well-defined emergent structures 

had been observed only inside the corralled areas. 

There had been observed minor alternating 

structures encompassing small number of excited 

cells located out of corrals. Interestingly, moving 

emergents were not observed.  

 

 

Fig.5. A sequence of snapshots depicting the evolution of the random initial condition (PCG64(124))  

same as Fig. 3 where 1% of randomly chosen cells' values are randomly swapped between  

values 0 and 1. Snapshots are taken at the times: 21, 38, 74, 89, 90, and 196, see [27]. 
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Fig.6. Snapshots of the evolution of diffusion patterns are shown for the identical initial conditions 

and times as in Fig. 5. Displayed sub-figures correspond one-to-one in both figures, see [27]. 
 

Figs. 5 and 6 differ from Figs. 3 and 4 only by 

swapping of randomly chosen cells' value between 

values of 1 and 0 in 1% of cases. Figs. 7 and 8 display 

the case when the values are swapped between 

values of 5 and 0 in 1% cases. All cases shown in Figs. 

3 to 8 are using the cell-alive lower threshold = 2 and 

the cell-alive upper threshold = 8. When the cell-alive 

upper threshold = 9, nothing changes in the evolution.  

The cell-alive upper thresholds < 8 leads to the 

collapse of the simulations.  

Therefore, there are two means of 

simulations disruption in the r-GoL that express 

a relatively high level of resilience: random 

disruption and change of thresholds when the 

cell is supposed to be alive. The emergent 

topologies are changed by applying random 

changes of cells' state, yet, simultaneously, novel 

emergents are qualitatively same as those 

existing in undisrupted simulations.  

From the diffusion patterns, it is evident that 

static and alternating structures are rooted in 

static and alternating diffusion patterns, 

respectively. 

 

Fig.7: A sequence of snapshots depicting the evolution of the random initial conditions  

(PCG64(124)) same as Fig. 3 where 1% of randomly chosen cells' values are randomly 

swapped between values 0 and 5. Snapshots are taken at the times: 10, 25, 54, 82, 130, 189, see [27]. 
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Fig.8. Snapshots of the evolution of diffusion patterns are shown for the identical initial  

conditions and times as in Fig. 7. Displayed sub-figures correspond one-to-one in both figures, see [27]. 

 
There are existing persistent, underlying 

diffusion patterns that are governing the evolution 

of the simulation, which remain invisible when we 

observe only the excited cells. It is understandable, 

as tracking all exited links among all cells is by 

orders of magnitude is more complicated than 

tracking excited cells themselves! 

From this insight, it is easily seen that information 

fluxes within networks interconnecting cells are 

fundamental for the correct understanding and 

interpretation of the underlying dynamics of the 

observed excitation of emergent patterns.  

When r-GoL is compared with real biologically 

observed excitatory networks that are observed 

within the brain, eye, heart, intestines, some 

striking similarities occur. It would be interesting 

to search for similarities between biological 

networks and the simplified model. 

5. Conclusion 

The paper demonstrated the existence of a robust 

generalization of the ‘Game of Life’ named the r-GoL, 

which is opening a promising area of algorithms, that 

can be applied in the design of the future, robust, 

massive parallel computational approaches and 

computers that will be increasingly resistant to 

random errors. The robustness of the r-GoL was 

demonstrated by applying varying levels of random 

changes of cells' states within different proportions of 

randomly chosen cells (0.0%, 0.01%, 1%) where the 

original GoL fully fails to maintain its emergents. The 

qualitative behavior of the emergents is robust, while 

the emergents’ detailed topology is changing. 
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