
Problems of Information Society, 2024, vol.15, no.1, 42-56

42

Developing a conceptual model for improving the software

system reliability

Tamilla A. Bayramova1, Nazakat C. Malikova2

1,2 Institute of Information Technology, B. Vahabzade str., 9A, AZ1141 Baku, Azerbaijan

tamilla@iit.science.az1, naranara_68@mail.ru2

orcid.org/0000-0002-8377-3572, orcid.org/0000-0001-9617-0554

ARTICLE INFO

http://doi.org/10.25045/jpis.v15.i1.05

 ABSTRACT

Article history:

Received 11 September 2023

Received in revised form

13 November 2023

Accepted 15 January 2024

In the Industry 4.0 environment, the software systems development methodology is rapidly

evolving, flexible technologies and new programming languages are being applied. The

development of the software industry has made the issue of the quality of software systems an

urgent problem. A number of quality models have been proposed for determining the quality

of software systems so far, and these models specify the parameters and criteria for evaluating

quality. Software reliability is one of the key indicators among the quality parameters of

software systems, as it quantifies software crashes which can bring down even the most

powerful system, ensuring that software systems run correctly and unexpected incidents do not

occur. The increasing difficulty of the software system, the expansion of the scope of issues

assigned on them, and as a result, the significant increase in the volume and complexity of the

software system have made the problem of the reliability of the software system even more

urgent. The essence of the issue is to reveal the main factors affecting the reliability of software

systems, demonstrate existing problems in this area and develop mathematical models for

assessing reliability. Mathematical models estimate the number of errors remaining in the

software system before commissioning, predict the time of occurrence of the next crash and

when the testing process will end. It is necessary to comprehensively approach the issue of

ensuring reliability at all stages of the life cycle of the software system. This paper proposes a

conceptual model to solve this problem.

Keywords:

Software Quality

Software reliability

Quality model

Classification of defects

Testing

Reliability model

Reliability parameters

1. Introduction

Information technology is one of the intensively

developing main areas of modern life. Complex

information systems are used to solve large-scale

scientific and industrial problems. They include

complex issues such as artificial intelligence and

management of special purpose objects, starting

with simple issues such as collecting, processing and

protecting information. Software systems control

nuclear reactors, and are applied in aviation,

medicine, banking and other areas of human

activity. The creation of cyber-physical systems

enable real-time systems to share data

instantaneously and freely and to make free

decisions, and robotics provides significant support

in highly dangerous environments for humans.

The introduction of automated information

systems, along with reducing the number of

operations performed by humans, has also created

new problems. As a result of serious errors in

software systems, man-made disasters occur,

companies suffer from huge damages, large-scale

accidents happen in the work of infrastructure

networks, and people lose their lives. The emergence

and development of cyber-physical, cyber-biological

systems, intelligent sensor networks, artificial

intelligence, nano and supercomputer technologies,

robotics, and unmanned aerial vehicles have

exacerbated security-related problems and added

new ones (Alguliyev et al., 2019). Providing

information security of cyber-physical systems and

preventing cyber-attacks has become one of the

challenging problems to solve (Bayramova, 2022).

15 (1)

2024

www.jpis.az

mailto:tamilla@iit.science.az
mailto:naranara_68@mail.ru
https://orcid.org/0000-0002-8377-3572
http://doi.org/10.25045/jpis.v15.i1.05

Problems of Information Society, 2024, vol.15, no.1, 42-56

43

Current software industry must produce high-

quality software systems to succeed in a competitive

market. Therefore, many companies spend a lot of

money on modernizing their software development

technologies. Currently, some enterprises have

accumulated enough experience using metrics to

manage the quality of software products developed

and implemented. Moreover, successful projects

individually develop important metrics based on the

characteristics of the work and the characteristics of

the application area.

Software quality is a complex and multifaceted

concept. There are different approaches to quality in

software engineering. The quality of the software

product refers to 1) the compliance of its

characteristics with the requirements specified, 2) the

absence of errors and mistakes in the product, 3) the

possibility of modifications in the software code and

adding new functions. Software code quality

management is one of the important issues of

software engineering, and the development of

quality software systems still remains one of the

most pressing problems today.

Measuring these characteristics allows to check

how well the software system meets the

requirements and determine the time to finish

software system testing, thereby saving time and

budget.

The work aims to determine the software system

reliability indicators and the main factors affecting

its reliability of the based on the quality models, and

to identify the problems in this field.

The paper proposes a conceptual model for

software reliability assessment.

2. Related Work

Brereton et al. analyze published research on

mentioned topics in software engineering. A

systematic review of the literature based on empirical

research in software development is summarized, a

number of analyzes conducted by the authors and

others are explained, and some recommendations are

made for the application of this practice to software

engineering (Brereton et al, 2007).

Lanxin Yang et al conducted a systematic review

of 241 software quality literature published between

2004 and 2018. The results showed that in recent

years, the goals in this field have become more

concise, the tools more diverse and rigorous, and the

quality criteria more considerate (Yang et al., 2021).

Sahu and Srivastava (2020) show that in order to

improve the reliability of software systems,

professionals attempt to measure, manage and

predict reliability. They consider reliability growth

models and their application at different stages of

software system development. Studies show that

there is no general forecasting model that covers all

processes. The authors propose the development of a

generalized model applicable at all stages to predict

the software system reliability. Such a model will

reduce the time and cost of applying several tools to

predict reliability at different stages (Sahu &

Srivastava, 2020).

Cristescu et al. describe the principles and

methods that form the basis of software reliability

assessment, starting with the definition of concepts

that express the characteristics of software quality.

The reliability assessment aims to analyze the risk

and reliability of software systems (Cristescu et al,

2015).

Maevsky et al (2017) analyze and classify

software reliability publications over the past 50

years. The classification is built using a facet-

hierarchical approach, which allows to systematize

scientific publications in the field of software

reliability. Based on statistics and the number of

publications according to different classification

criteria, a retrospective analysis of changes in this

topic is conducted (Maevsky et al, 2017).

Felipe Febrero et al. point out that there is a real

need to develop effective methods for creating

reliable software systems. To this end, they analyze

international quality standards. They emphasize that

it is important to develop the proposed SRGM

models according to these standards to ensure that

they are not only reliable, but also well-founded and

cost-effective to implement (Febrero, Calero, &

Moraga, 2016).

Yadav H. and Yadav D. point out that analyzing

and assessing the reliability of software systems

early in the software life cycle leads to improved

quality while reducing the time and cost of testing.

They propose a model to predict the density of

software errors using fuzzy logic and reliability

metrics collected in the early stages of the software

life cycle. The proposed model was applied to

twenty real projects. Experiments show that this

indicator is higher in the requirements analysis

phase than in the design and coding phase (Yadav &

Yadav, 2017).

Alaswad and Poovammal review the application

of machine learning algorithms in predicting the

quality of software systems and the metrics and

methods to be used. First, they give the quality

indicators, which are the input data of the machine

learning algorithms. After that, they analyze

forecasting methods and mechanisms. The authors

Problems of Information Society, 2024, vol.15, no.1, 42-56

44

emphasiz the presence of professional experts as an

important attribute in the development of quality

software. They show that machine learning

algorithms can provide more accurate predictions by

being trained on pre-detected errors in the software

(Alaswad & Poovammal, 2022).

Sahu and Srivastava highlight that numerical

evaluation of reliability based on the detection of

bugs, errors and failures leads to the construction of

a more reliable system (Sahu & Srivastava, 2019).

Abdallah et al. propose a model to measure the

quality of IoT systems. The authors emphasize that

the Internet of Things affects all areas of life.

Therefore, they must be of good quality. They use

reliability and scalability as the main characteristics

(Abdallah et al., 2019).

Jalilian and Mahmudova propose a new method

for error detection using the Imperialist Competitive

Algorithm in their article.

3. About the quality of the software

system

Low quality in real-time systems, management,

aviation, medicine and other critical systems can

lead to economic losses, environmental problems,

loss of human life, etc. Following the Mariner 1

control system accident that resulted in its loss, the

US Air Force Board decided to conduct code

expertise (the analysis of the software code by

another expert after the software was developed) in

the software development process for the first time

in 1962 (Daniels et al, 2003).

Systematic research on the quality of software

systems has been started since the 70s of the 20th

century, and even now many researchers focus on

this problem (Musa & Everett, 1990; Al-Qutaish,

2010; Ndukwe et al, 2023). The Consortium for

Information and Software Quality published a study

entitled “The Cost of Poor Software Quality in the

US: A 2022 Report” (2023). This report quantifies the

impact of low-quality software on the US economy.

In 2022, the damage caused by such programs was

estimated at 2.41 trillion USD. Of this, 1.52 trillion

USD is accounted for by software crashes. The report

focuses on the following areas to address software

deficiencies:

 Quality standards / taxonomy of software

problems;

 Tools for understanding, searching and

eliminating deficiencies;

 Artificial intelligence / machine learning

tools.

The standards of software engineering are

developed, improved and expanded as a result of

the integration, regulation and optimization of

advanced methods and theories developed as a

result of research and accepted in enterprises. The

role of international standards in the evolution of

software systems is great. Various standardization

organizations (ISO/IEC, ANCI, IEEE) have

developed hundreds of international standards to

improve software quality. These standards are

developed based on research results and incorporate

advanced methods and theories. They support and

regulate the software life cycle processes, and at the

same time, they are applied to reduce the costs

incurred in the production of software systems, to

control the quality of software products and to

increase the quality of services related to them

(Bayramova, 2020).

Different definitions of software quality have

been proposed by standardization organizations.

Software Quality:

 is a set of features and characteristics that

ensure the ability of a product or service to

meet specified or intended requirements

(ISO 9001).

 is the degree to which software has a

desired combination of attributes (IEEE

1061).

 is the planned and systematic arrangement

of all activities necessary to reasonably

assure that an item or product conforms to

specified technical requirements (IEEE 730).

If we summarize them, we can conclude that the

quality of the software system is the degree of

compliance of the functional, technical, operational

characteristics of the ready-to-use software tools

with the goals and requirements set before their

development.

The concepts of software product quality and

software code quality are distinguished. The quality

of a software product is determined by how well it

meets the requirements of users. If at the first stage

the analysts are not able to correctly identify the

issues and problems of the users, then the software

product that does not meet the requirements cannot

be called quality.

The quality of the software code refers to its

properly designed architecture, strict structuring,

precise division of the code into functional blocks,

placement of components, correct design of

connections between them, absence of errors, etc.

Standards, various methodologies and practices, and

design templates are used to develop high-quality

software code.

Problems of Information Society, 2024, vol.15, no.1, 42-56

45

There is a fundamental difference between

software system quality and software code quality.

A software system may have quality written code;

however, it is considered poor quality if it does not

meet the requirements. Conversely, a software

system may meet all requirements but have poor

quality software code. These issues are checked

during software system verification and validation.

Consequently, quality software refers to software

that has successfully passed both the validation and

verification process (Bayramova & Abbasova, 2016).

4. Quality models of software systems

A number of quality models have been proposed

for developing quality software systems and

measuring quality so far (Al-Qutaish, 2010; Kumar &

Gupta, 2017; Miguel et al, 2014). Quality models of

software systems have been applied since the 70s of

the 20th century and have maintained their

importance in improving the quality of software

systems. The first quality models were developed by

McCall and Boehm (McCall et al, 1977; Boehm et al,

1978). Later, IEEE 1219, ISO 9126 and ISO 25010

models were developed by standardization

organizations. Software systems quality models can

be adapted to all areas (the Internet of Things,

mobile applications, etc.) depending on the context.

The most commonly used models ISO/IEC 9126

(2001) (Fig. 1.) and ISO/IEC 25010 (2011) (Fig. 2.) as

its continuation are developed. The latter was

revised and approved in 2017 and remains current.

The ISO 9126 quality model was developed

based on McCall and Boehm’s quality models. In

this model, internal and external characteristics of

software systems are defined and functionality

metrics are added. The ISO 25010 model is an

updated version of the ISO 9126 model, adding new

characteristics such as security and compatibility

(Gordieiev et al, 2014; Albeanu et al, 2020). This

quality model is based on 8 main characteristics and

their sub-characteristics (Jharko, 2021).

Fig. 1 and Fig. 2 show that the quality of a

software system includes the main parameters such

as functionality, usability, efficiency, supportability,

portability, compatibility and security, and these, in

turn, are grouped into criteria. These parameters and

criteria provide consistent processes and

terminology for defining, measuring, and evaluating

system and software product quality.

It should be noted that all parameters of quality

depend on each other. Although all parameters of

quality are interdependent, one of them may be

more important than the other. In general, if high

values are obtained for all parameters, it is possible

to guarantee the quality of the software system.

Thus, the main requirements for the quality of

modern software:

 high reliability;

 protecting the completeness, correctness and

accuracy of information;

 providing protection against unauthorized

data access;

Fig. 1. ISO 9126 quality model

Problems of Information Society, 2024, vol.15, no.1, 42-56

46

 comfortable and understandable user

interface;

 possibility of data sharing with other

information systems;

 fast operation;

 possibility of the software system expansion

5. Reliability of software systems

There are two approaches to evaluating software

reliability: qualitative and quantitative. In the quality

approach, standards are based on a system of

requirements defined by organizational normative

documents. These requirements are checked when

assessing software reliability. In the quantitative

approach, software reliability is calculated based on

various mathematical models. However, given the

uneven distribution of errors and the fact that

program failure is an unstable process, it is

impossible to accurately calculate reliability based on

these classic models (Shuman, Celinski-Moranda,

Goel-Okumoto, Corkoren, etc.).

Among the quality characteristics of software

systems, software reliability is considered a key

parameter, as it quantifies the failures that can

bring down even the most powerful system,

ensuring that software systems run correctly and

that there are no unexpected failures. Most users

consider reliability to be a fundamental aspect of

quality. Measuring the reliability of software

systems is an important step in developing quality

software (Rashid, Mahmood & Nisar, 2019).

Software Reliability Engineering (SRE) is adopted

as a best practice or standard by a number of

companies (AT&T, IBM, NASA, Microsoft, etc.).

High requirements are placed on the reliability of

software developed for real-time systems, medical

equipment, aviation, space industry, etc.

Different organizations provide various

definitions of software system reliability:

 Software reliability is the probability of the

software to run without failure for a

specified period of time and in a specified

environment (ANSI/IEEE, 1991).

 Software reliability is the ability of a system

or component to perform required

functions for a specified period of time

Fig. 2. ISO/IEC 25010 quality model

Problems of Information Society, 2024, vol.15, no.1, 42-56

47

under specified conditions (Smidts, Stutzke,

& Stoddard, 1998).

According to the ISO/IEC 25010 (2011) standard,

software reliability is the degree to which a system,

product, or component performs certain functions

over a certain period of time, that is, the ability to

maintain its performance when used under certain

conditions. The sub-parameters of reliability

according to this standard are listed below:

 Maturity - compliance of the system,

product or component with the

requirements for reliability in normal

operation.

 Availability - degree to which the system,

product or component is functional and

available at the time of need.

 Fault tolerance – degree to which the system,

product, and component maintain their

operational status despite the presence of

errors in the software.

 Recoverability - degree to which a system,

product, or component can recover data or

restore the desired operating mode of the

system in the event of an accident.

Software failures are not caused by component

failure or deterioration, they are caused by

undetected errors in software. Unfortunately, even

in enterprises where experienced and professional

web developers and testing specialists work, it is

impossible to eliminate 100% of errors in software.

Because the functions software performs are

increasing day by day, the volume and complexity

of the software code is also growing accordingly.

Software system failures differ from hardware

failures. The reliability of a software system does not

change over time unless the programmer makes

changes or a new version is developed. Hardware

wears out over time, but a software system doesn’t.

The time dependence of software and hardware

reliability is illustrated in Fig. 3 and Fig. 4,

respectively.

As can be seen from the figures, the reliability of

the hardware decreases over time and the number of

failures increases after a certain moment. However,

the number of failures in software does not increase

over time, but rather decreases. When the software

system is updated, the number of failures increases

due to the introduction of new errors and decreases

again as the errors are corrected. That is, the

reliability of software systems directly depends on

the number of errors in it (Van Driel et al, 2014).

Measuring and predicting reliability helps to

increase the lifetime of any software. Table 1

presents similarities and differences between

hardware and software reliability (Ghodrati et al.,

2015).

Table 1. Similarities and differences between

software system and hardware reliability

Software reliability Hardware reliability

Interfaces are conceptual

(changeable)

Interfaces are visual

Design doesn’t use

standard components

Design uses standard

components

It does not wear out over

time. New failures may

appear after the “old”

code is updated.

Failure may occur due to

wear and other

stress/strain related

errors.

Failure occurs during the

execution of an incorrect

logical path. Reliability

increases by detecting

and eliminating errors.

Depending on the

duration of work, the

intensity of failures is

decreasing or stable,

unpredictable.

Depending on the

duration of work, the

intensity of failures can

be decreasing, stable or

increasing. Component

failures occur based on

physical laws.

Failures are the result of

constructive errors.

Failures occur as a result

of projecting, manufac-

ture and service.

R
eq

u
ir

em
en

ts

an
a

ly
si

s

D
es

ig
n

C
o

d
e

T
es

t
\

D
eb

u
g

U
p

d
at

e

U
p

d
at

e

F
ai

lu
re

 r
at

e

t Fig. 3. Time dependence of software reliability

F
ai

lu
re

 R
at

e

t

Burn in Useful work Wear out

Fig. 4. Time dependence of hardware reliability

Problems of Information Society, 2024, vol.15, no.1, 42-56

48

Maintenance is not

provided

Equipment can become

more reliable as a result

of maintenance.

Environmental condit-

ions do not affect the

reliability of the software.

Internal environmental

conditions (memory, low

tact frequency, etc.) affect

reliability.

Reliability depends on

environmental

conditions.

Standard components are

not used during

development of software.

Standard components are

used in the construction

of the equipment.

Unlike hardware reliability, software reliability is

difficult to measure because software is not a

material product and its essence cannot be well

understood. To achieve high quality, it is necessary

to improve manufacturing, risk and configuration

management processes.

Industry 4.0 offers new opportunities for

engineers and programmers to build modern

systems and apply innovations to smart devices and

tools. While these innovations contribute to

infrastructure development for the industry, they

also create new and unknown failure mechanisms,

unknown threats and risks. This directly affects the

reliability of software systems (Gokhale, 2007). The

increase in the complexity of the software code

makes it difficult to develop error-free and full-

quality software systems.

Reliability of software systems is a function of

errors remaining in the software system after

commissioning. In other words, the evaluation of the

reliability of software systems depends on the

number of uneliminated errors and errors remaining

in the program. If new errors are not added when

they are corrected, the reliability of the software

system increases during operation. The more

intensively the software is operated, the more

intensively the errors remaining in it are detected,

and the reliability and, accordingly, the quality of the

system increases. An error-free software is

completely reliable. However, since it is impossible

to build 100% error-free software, it is practically

impossible to achieve absolute reliability.

Undetected errors appear over time under certain

conditions during system maintenance and

operation (Jatain & Mehta, 2014).

The length of the software code in currently

created complex software systems is measured in

millions of lines. The increase in software complexity

has led to an increase in the number of errors in it,

and the average number of errors per thousand lines

of untested software code varies in the range of 10-50

(Nayyar, 2019). During the development of software

systems, the presence of errors in the program code

is inevitable, searching for and eliminating these

errors requires a lot of effort and time. A software

reliability error is an error or distortion accidentally

introduced during the processing of the software

code that causes failures or limitations of

functionality during the operation of the software.

Software failure is when the program stops working

completely, and/or for a certain period of time

causing data loss, and/or stops working and requires

the program to be reloaded.

A large number of errors in software leads to the

following consequences:

 Software reliability, as well as quality

become low;

 Users are dissatisfied with the software

performance.

The IEEE 610.12 (1990) standard gives an

explanation of the concepts of error, defect, and

failure in software:

 Error: negligence of software developers,

misunderstanding of requirements,

incorrect design of requirements, etc.

resulting in problems in the software code.

Errors in software code are made by

software engineers, programmers, analysts

and testers.

 Defect or fault: program errors that cause the

software system to fail to perform its

functions. Defects or faults are detected

during software system testing, but not all

defects detected during testing cause errors

(for example, spelling errors in comments).

Testing experts also use the term Bug.

 Failure: inability of the software system

(component) to perform the expected

functions within certain requirements or

stop its work (Fig. 5.). Software failures can

result in major disasters in critical systems.

 Failure rate: frequency of failures during the

testing or operation of the software system.

Errors can occur at all stages of the software life

cycle. Errors in design, development and operation

can lead to different results. Errors that occur during

the design and writing of the software code are

eliminated to some extent during the testing process.

Errors remaining during operation are gradually

detected and corrected. However, there are errors

that seem insignificant or unnoticeable, turn into

serious errors over time and the applicability of the

software becomes complicated. This type of errors

are serious problem bearers, because they manifest

themselves after long-term operation of software

Problems of Information Society, 2024, vol.15, no.1, 42-56

49

systems. Software projects that seem successful at

first glance can be stopped or a code is rewritten due

to such errors. This leads to an increase in budget

costs in several times. Leading software companies

are working on these problems.

Error management to save resources, improve

test efficiency, user satisfaction, and software

reliability, is one of the pressing issues facing

software engineering.

Special attention is paid to accompanying

software in critical information systems, collecting,

analyzing and classifying errors that occur in the

work process.

Errors detected during testing and after

implementation of the software system are classified

according to the source of occurrence, degree of

severity and priority of editing (table 2). The severity

of errors is determined by the degree to which they

affect the functionality or performance of the

software system. The more these errors affect the

operation of the system, the higher the severity level.

The priority of software system errors is the

sequence in which they are eliminated after they are

detected. The severity of a bug or error is often

determined by the software system quality engineer

and the priority by the project manager. 3 groups of

defects are distinguished according to their priority

(table 3.) (Defect Severity And Priority In Testing

With Examples And Difference, 2023).

Typically, the priority of error correction depends

on its severity. Errors with critical priority should be

fixed first. In some cases, errors of low severity need

to be fixed urgently (for example, incorrect display

of flag colors).

Table 2. Classification of software errors by

severity

No Type Description

S1 Critical Errors defined as critical do not allow

the operation or testing of the software

system to continue (for example, shuts

down the program).

S2 Major These types of errors cause a serious

problem in the operation of the

software system, the main functions

do not work.

S3 Minor

These types of errors do not seriously

affect the operation of the program, but

cause serious inconvenience to the user

(for example, errors in the interface).

S4 Low/

Trivial

These types of errors are not very

noticeable or do not affect the

functionality of the software system

(e.g. grammatical and spelling errors).

Table 3. Classification of software errors by

priority

No Type Description

P1 High

The error seriously affect the operation

of the system, the software system

cannot be used without its elimination,

so it must be corrected immediately.

P2 Medium
The bug fix is not urgent, it may be

fixed in the next version.

P3 Low

The effect of the error on the operation

of the system is not so serious, it can be

corrected after eliminating other

errors, or even if it is not corrected, it

does not cause a problem.

Determining the cause and type of errors found

in the testing and work process and classifying them

facilitates their management, reduces testing costs

and prevents repetition of failures (Fig. 5).

The main causes of faults in the software system

are as follows:

 Complexity of the problem realization;

 Short work schedule;

 Limited budget funds;

 Frequently changing requirements;

 Lack of professionalism and work

experience of the software team;

 Complexity of technologies used in modern

software industry;

 Errors in the technologies used in

programming;

 Integration of modules and components

into the system;

 Improper preparation of documentation;

 etc.

Fig. 5. Classification of errors in software systems

Software
defect

classification

Severity

Critical

Major

Minor

Low

Priority

High

Medium

Low

Main origin
of defects

Technical
problems

Human factor

Problems of Information Society, 2024, vol.15, no.1, 42-56

50

6. The main factors affecting the

reliability of software systems

Most research on the reliability of software

systems focus on the analysis of the internal quality

of the system and did not take into account the

environmental factors that directly affect the reliabi-

lity of software systems during the development,

testing and implementation stages. Development of

software systems is a product of intelligence. For a

comprehensive assessment of reliability, both

internal and environmental factors must be taken

into account. In recent years, various studies have

been conducted on the effect of environmental

factors on the reliability of software systems (table 4).

In 2000, Zhang and Pham (2000) surveyed 32

such factors, taking into account all stages, human

factors, and hardware parameters covering the

software life cycle. Empirical studies were

conducted at 13 software companies. Managers,

system engineers, programmers, testers

participated in the survey. In the study, the impact

of all factors on the reliability of software systems

was analyzed and ranked. In the next study, they

analyzed the relationship between them to reduce

the number of factors (Zhang et al, 2001). 15 years

later, Zhu et al (2015) repeated their first survey at

20 software companies. Table 5 presents the results

of both surveys.

Table 4. Basic studies on the effect of

environmental factors on the reliability of software

Authors Research object Country Factor

Zhang and

Pham

(2000)

Based on 23

inquiries at 13

different companies

USA 32

Zhang et

al. (2001)

Based on 35

inquiries at 13

different companies

USA 32

Zhu et al.

(2015)

Based on 35

inquiries at 20

different companies

USA 32

Zhu and

Pham

(2017)

Based on 45

inquiries at 20

different companies

USA 32

Özcan et

al. (2020)

Based on a survey

of 70 experts

Turkey 32

Ozcan et al. conducted a survey of 70 experts in

the Turkish software industry with the participation

of managers, software engineers, testers, analysts

and others to determine the factors affecting the

reliability of software systems.

All other studies in this area were conducted in

the United States. This was the first survey

conducted in the second country. The survey results

were analyzed and ranked using statistical methods.

The result of this study does not differ from previous

years much (table 6). Most of the first 10 factors listed

in previous studies were also included in the top ten

here (Ozcan et al, 2020).

From these studies, it appears that the main

factors affecting the reliability of software systems

are testing processes, software code complexity,

documentation, modern programming technologies,

and the human factor.

Table 5. The factors affecting software reliability

N Factors

Zhang and Pham (2000) Zhu et al. (2015)

1. Program complexity Frequency of software

specification change

2. Programmer skills Testing effort

3. Testing coverage Testing environment

4. Testing effort Testing coverage

5. Testing environment Software complexity

6. Frequency of

specification change

Programmer skills

7. Testing methodologies Percentage of modules

reused

8. Requirements analysis Relationship of

detailed design and

requirements

9. Percentage of reused

code

Testing methodologies

10. Relationship of

detailed design and

requirements

Domain knowledge

11. Level of programming

technologies

Programmer

organization

12. Documentation Program workload

13. Program workload Testing resource

allocation

14. Testing tools Work standards

15. Programmer

organization

Requirements analysis

16. Domain knowledge Human nature

17. Programming

difficulty

Development

management

18. Design methodologies Programming

difficulty

19. Human nature Amount of

programming effort

20. Development

management

Level of programming

technologies

21. Testing resource

allocation

Testing tools

22. Amount of

programming effort

Documentation

23. Program categories Volume of program

design documents

Problems of Information Society, 2024, vol.15, no.1, 42-56

51

24. Work standards Design methodology

25. System software Development team

size

26. Volume of program

design documents

Programming

language

27. Development team

size

Program categories

28. Programming

language

Processor

29. Processor Telecommunication

devices

30. Telecommunication

device

System software

31. Input/output devices Input/output devices

32. Storage devices Storage devices

Table 6. Top 10 factors affecting software

reliability according to a survey conducted in

Turkey

No Factors

1. Testing coverage

2. Testing effort

3. Testing environment

4. Domain knowledge

5. Program complexity

6. Program workload (stress)

7. Frequency of program specification change

8. Average number of years in software

development

9. Level of programming technologies

10. Human nature

7. Models improving software reliability

A measure of software reliability is the degree to

which errors are detected and fixed. The software

reliability modeling aims to:

 calculate the remaining time for the

manufacture of the software product;

 evaluate the reliability of the product at the

time of its release.

An accurate assessment of reliability provides

both manufacturers and users with some degree of

assurance that the software system will run

successfully. Estimating the number of bugs

remaining in a software system and predicting the
time of the next failure are critical factors in deciding

whether to release a software product or how long to

test it. (Van Driel et al, 2021). Reliability modeling is

the process of developing models to create error-free

and reliable software systems. Numerous

mathematical models have been developed for

numerical evaluation of reliability of software

systems and error management. These models are

called software reliability growth models (SRGM).

The number of failures and the time of their

occurrence are recorded during the testing and

operation of the program. Software reliability

growth models are applied to predict the time of the

next failure in the software system and the number

of further errors to be detected based on this

recorded historical data (Nagar & Thankachan,

2012).

In the field of detailed study of the reliability of

software systems, the main issue is the study of

reliability growth models and the development of

new ones with the application of modern

technologies. SRGM is a tool for evaluating the

reliability of a software system and providing

information about product quality to users (Lee et al,

2022). In classical reliability models, the reliability

assessment of software systems is mainly based on

the following parameters:

1. internal structural metrics of the program code

(number of modules, subsystems, inter-module

interfaces, operators, cycle complexity, etc.);

2. metrics detected during testing (time

dependence of failures, number of failures,

number of errors, time to find errors, etc.):

 Mean Time to Failure (MTTF)

It is defined as the time unit between

consecutive rejections. If the average failure-free

operation time is not 150, then a software failure

may occur every 150 time units.

 Mean Time to Repair (MTTR)

Following a software failure, it takes some time

to detect and fix the error. MTTR is the average

time required to find and fix an error.

 Mean Time Between Failure (MTBF)

MTBF = MTTF + MTTR

MTBF=300 means that when a failure occurs,

the next failure can occur after 300 hours.

 Rate of occurrence of failure (ROCOF)

It is the number of failures per time unit.

ROCOF=0.02, i.e., 2 failures can occur every 100

time units.

 Probability of Failure on Demand (POFOD)

POFOD is the probability that the system will fail

when a request for service is sent. If POFOD=0.1,

then one out of every 10 requests sent for the

service may result in a failure.

 Availability (AVAIL)

It is the probability that the system is available for

use at the current time. If AVAIL=0.995, then the

system will be available in 995 time units out of

1000. If the system has not worked for 4 hours out

of 100 hours, its availability is 96%.

Problems of Information Society, 2024, vol.15, no.1, 42-56

52

 Number of undetected errors;

 Trial period (calendar time, processor time).

3. environmental factors affecting the reliability

of software systems and the structure of input

data.

The probability of the software system failure is

measured in the interval [0,1]. This indicator of a

system with high reliability is close to 1, and on the

contrary, the closer this value is to 0, the lower the

reliability. Reliability can also be measured by

failure-free time. For example:

 The probability of 50 hours of

uninterrupted operation of the information

system is 0.99;

 The system controlling the trains movement

breaks down every two years.

The first reliability model was proposed by

Hudson in 1967. Shortly thereafter, Shuman applied

the methods and terms used in hardware reliability

to the calculation of software reliability in his 1968

book Probabilistic Reliability. In the same year, the

term “software engineering” was first used at the

NATO conference, and a separate session focused on

the problem of software reliability. Software

reliability engineering has its roots in structural,

hardware, and electrical engineering. The Goel-

Okumoto and Celinski-Moranda models are among

the first published robust models in this field. As

failures are detected and corrected in a software

system, its reliability increases and the intensity of

crashes decreases (Fig. 6.) (Cusick, 2019).

The basic principle of SRGM is to determine

whether the reliability of the software system has

increased sufficiently to meet the expected

requirements by applying data about the time of

occurrence of software failures or test results.

Software engineers can evaluate the reliability of

software systems using these models. Project

managers determine the testing period and the

release time of the software product.

Since 1972, hundreds of such models have been

developed, but very few of these models have been

tested on real data, and only a small number of

models have been applied. Two groups of software

systems reliability growth models are distinguished:

parametric and non-parametric models. Parametric

models are built on the basis of certain assumptions.

3 types of these models are available: non-

homogeneous Poisson processes (NHPP), Markov

models and Bayesian models. NHPP models are

widely used in evaluating the reliability of software

systems. According to their characteristics, software

reliability models are grouped into 2 classes:

deterministic and probabilistic. Deterministic models

are based on the number of different operators and

operands in the program code. Probabilistic models

treat the occurrence of failures and the elimination of

errors as probabilistic events. The first NHPP model,

which inspired the development of others, was

developed by Goel and Okumoto in 1979.

Although NHPP models are widely used, they

are based on certain limitations or assumptions

about the nature of software errors and failures.

Therefore, choosing an appropriate model based on

program characteristics is a complex issue. Accurate

data is needed for both evaluation and forecasting,

for which errors, failures, and the time of their

occurrence detected must be accurately recorded

during testing and operation. There is no model that

accurately predicts all data, different models can

predict well for a given dataset, and the best model

is selected based on the comparison of the results of

several models.

Over the past 50 years, hundreds of statistical

and analytical models have been developed based

on certain constraints and assumptions. However, as

these models have different predictive capabilities

for different data, there is no single model

appropriate for all data. To overcome this problem,

the development of non-parametric models based on

intelligent technologies has been preferred in recent

years.

8. Developing a conceptual model

Since the causes of faults in software systems are

diverse, the demand for developing and evolving

new solutions, algorithms, models and methods for

the production of a reliable software system is

increasing. To evaluate the reliability of software

systems, it is not enough to develop methods using

only the results obtained during testing. Table 5

identifies 32 factors affecting the reliability of

software systems and arranges them according to

their rating based on empirical experiments. In this

study, the first 6 factors (documentation, testing,

Time

Fig. 6. Relationship of reliability to failure intensity

Problems of Information Society, 2024, vol.15, no.1, 42-56

53

software complexity, programmer skills) are

investigated and a comprehensive approach for

reliability assessment is proposed. Fig. 7 provides a

conceptual model of this approach. Minimizing

errors in software code is one of the most pressing

issues to ensure reliability, and the following

comprehensive approach is required to implement

this issue:

 Prevention of faults;

 Detection and elimination of faults;

 Ensuring fault tolerance;

 Development of fault prediction and

reliability improvement models;

The first group includes principles and methods

aimed at minimizing or completely eliminating

faults. This group includes principles and methods

whose purpose is to prevent errors in finished

software code. They can be divided into the

following categories:

 Depending on the purpose of the case, the

team working on the software should be

chosen correctly, because the main source of

faults is the human factor;

 Minimizing the complexity of the program

code, because the intensification in

complexity leads to an increase in the

number of undetected errors;

 Proper drafting of documentation.

Error prevention is the most optimal solution for

developing reliable software. However, despite these

measures, it is not possible to develop fault-free

software. The source of faults in software is the

professionals who work on it. In other words, they

are specific people with individual characteristics,

professionalism, talent and experience (Ferreira et al,

2023).

The second group includes the development of

new approaches and methods for detecting errors

during software testing. Errors are detected and

eliminated during the testing of software systems.

The increase in the complexity of software systems

has increased the demand for the development of

modern testing methods. Software testing is an

effective technical tool that ensures the quality of

software products by detecting errors.

Understanding the cause and type of errors makes

them easier to manage, reduces testing costs, and

helps reduce the recurrence of defects by retraining

software developers. Thus, the classification of

software errors is a central process. Moreover, with

the increase in the number of software systems and

the increase in system complexity, the number of

defects has increased to such an extent that it is

impossible to accurately and quickly classify them

with traditional methods. The development of

machine learning has facilitated the automation of

the testing process (Bayramova, 2020).

Many experts involved in the testing process

have emphasized the importance of integrating

artificial intelligence into software testing processes.

Enterprises organizing testing processes with the

application of artificial intelligence models and

Fig. 7. Conceptual model for software reliability improvement

Problems of Information Society, 2024, vol.15, no.1, 42-56

54

methods have already entered a new era, their

competitiveness has also increased. New methods

and models based on artificial intelligence have been

developed for efficient processing of big data.

The application of artificial intelligence

technologies in the testing of software systems

provides more accurate results than traditional

testing methods and decreases the time spent on

testing, reducing the software development time

(Kazimov et al., 2021).

The third group includes the development of

new methods for automatic recovery of software

when certain errors occur as a result of remained

software errors. Resilience is the ability of software

systems to continue operating under any

circumstances. The purpose of software system

stability methods is to prevent inactive errors from

turning into active errors. Backup versions of

software systems are created to ensure their

resiliency. The purpose of the methods from this

group is to maintain the operation of the software

system despite the presence of errors. When an

error occurs in the main program, control is

transferred to the backup program. The

disadvantage of these methods is that the cost of

the software system increases, it is difficult to detect

errors in the testing process. This method is used in

particularly critical systems.

The fourth group includes the development of

methods and algorithms for predicting errors in

software modules and assessing reliability. Software

reliability modeling is one of the most active areas of

software engineering (Nagar & Thankachan, 2012).

9. Conclusion

Nowadays, medicine, transport, atomic energy,

and many other critical areas have become

dependent on software systems, which has further

increased the demand for high-quality software

products. In order to guarantee the quality of

software systems, it is necessary to accurately assess

reliability, which is one of its main indicators. A lot

of realizations have already been done in this area,

and various methods and models have been

developed to evaluate the reliability of software

systems. The significant increase in errors in modern

software systems is a fundamental problem of

software engineering, and the prevention, prediction

and timely detection of these errors is one of the

most urgent issues.

To evaluate the reliability of software systems,

this study proposed a comprehensive approach to

this problem by solving issues such as the evaluation

of complexity of the software code and the potential

of each team member working on the software

project, the prediction of faulty software modules

based on the metrics of the internal structure of the

software code, prediction of the number of

undetected errors and the duration of their

occurrence based on the errors detected during

testing and operation.

Overall, 3 groups of problems can be emphasized

in the assessment of reliability of software systems:

 Lack of a unique methodology for

developing software systems;

 Lack of a unique methodology for testing

software systems;

 Lack of a unique approach to problem area

analysis.

To ensure the software reliability, the following

issues must be addressed:

 Determination of the factors affecting the

software reliability;

 Application of software reliability

enhancement methods in the design and

operation processes;

 Improvement of available methods;

 Development of new methods based on

artificial intelligence technologies for

software evaluation and forecasting.

References

Abdallah, M., Jaber, T., Alabwaini, N., & Abd Alnabi, A. (2019). A

proposed quality model for the Internet of Things systems. In

2019 IEEE Jordan International Joint Conference on Electrical

Engineering and Information Technology, 23-27.

Alaswad, F., & Poovammal, E. (2022). Software quality

prediction using machine learning. Materials Today:

Proceedings, 62, 4714-4720.

 https://doi.org/10.1016/j.matpr.2022.03.165.

Albeanu, G., Madsen, H., Popențiu-Vlădicescu, F. (2020).

Computational Intelligence Approaches for Software

Quality Improvement. Reliability and Statistical

Computing: Modeling, Methods and Applications, 305-317.

Alguliyev, R. M. & Mahmudov R. Sh. (2019). Sensitive personal

data in the national mentality context and its security

provision. . Problems of Information Society, №2, 117–128.

Al-Qutaish, R. E. (2010). Quality models in software

engineering literature: an analytical and comparative

study. Journal of American Science, 6(3), 166-175.

Bayramova, T.A. (2020). Analysis of software engineering

standards. Problems of Information Society, 11(1), 83–95.

Bayramova, T.A. & Abbasova N.P. (2016). Verification and

validation of software / «Questions of application of

mathematics and new information technologies» III republican

scientific conference, Sumgayit, December 15, 197-198.

https://doi.org/10.1016/j.matpr.2022.03.165

Problems of Information Society, 2024, vol.15, no.1, 42-56

55

Bayramova, T.A. (2022). Classification of software defects.

Proceedings of the III international scientific conference on

information systems and technologies: achievements and

perspectives, Sumgayit, 256-258.

Bayramova, T.A. (2022). Analysis of Modern Methods for

Detecting Vulnerabilities in Software for Industrial

Information Systems // Cybersecurity for Critical

Infrastructure Protection via Reflection of Industrial

Control Systems, NATO Science for Peace and Security

Series D: Information and Communication Security. -

Amsterdam, 160-162.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G.,

Merritt, M. (1978). Characteristics of Software Quality.

North Holland Publishing, Amsterdam, The Netherlands,

45-68, 169.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., Khalil,

M. (2007). Lessons from applying the systematic literature

review process within the software engineering domain.

Journal of systems and software, 80(4), 571-583.

https://doi.org/10.1016/j.jss.2006.07.009.

Cristescu, M. P., Stoica, E. A., Ciovică, L. V. (2015). The

comparison of software reliability assessment models.

Procedia Economics and Finance, 27, 669-675.

https://doi.org/10.1016/S2212-5671(15)01047-3.

Cusick, J. J. (2019). The first 50 years of software reliability

engineering: A history of SRE with first person accounts.

arXiv preprint arXiv:1902.06140.

Daniels, D., Myers, R., & Hilton, A. (2003). White box software

development. In Current Issues in Safety-Critical Systems:

Proceedings of the Eleventh Safety-critical Systems

Symposium, Bristol, UK, 4–6 February 2003, 119-136.

London: Springer London. https://doi.org/10.1007/978-1-

4471-0653-1_7.

Febrero, F., Calero, C., & Moraga, M. Á. (2016). Software

reliability modeling based on ISO/IEC SQuaRE.

Information and Software Technology, 70, 18-29.,

https://doi.org/10.1016/j.infsof.2015.09.006.

Ferreira, F. H. C., Nakagawa, E. Y., dos Santos, R. P. (2023).

Towards an understanding of reliability of software-

intensive systems-of-systems. Information and Software

Technology, 158, 107186.

Ghodrati, B., Hadi Hoseinie, S., Garmabaki, A. H. S. (2015).

Reliability considerations in automated mining systems.

International journal of mining, reclamation and

environment, 29(5), 404-418.

Gokhale, S. S. (2007). Architecture-based software reliability

analysis: Overview and limitations. IEEE Transactions on

dependable and secure computing, 4(1), 32-40.

Gordieiev, O., Kharchenko, V., Fominykh, N., Sklyar, V. (2014).

Evolution of software quality models in context of the

standard ISO 25010. In Proceedings of the Ninth

International Conference on Dependability and Complex

Systems DepCoS-RELCOMEX. June 30–July 4, 2014,

Brunów, Poland, pp. 223-232. Springer International

Publishing. https://doi.org/10.1007/978-3-319-07013-1_21

IEEE 610.12-1990 Standard Glossary of Software Engineering

Terminology. https://ieeexplore.ieee.org/document/159342

IEEE 730-2014 Standard for Software Quality Assurance

Processes. https://ieeexplore.ieee.org/document/6835311

IEEE 1061-1992 Standard for a Software Quality Metrics

Methodology. https://ieeexplore.ieee.org/document/237006.

In use qualities from ISO/IEC 25010. 3-4.

https://www.irit.fr/recherches/ICS/projects/twintide/uploa

d/435.pdf

ISO 9001 and related standards. https://www.iso.org/iso-9001-

quality-management.html

ISO/IEC 25010:2011 Systems and software engineering —

Systems and software Quality Requirements and

Evaluation (SQuaRE) — System and software quality

models. https://www.iso.org/obp/ui/#iso:std:iso-

iec:25010:ed-1:v1:en

ISO/IEC 9126-1:2001 Software engineering — Product quality

— Part 1: Quality model.

 https://www.standards.ru/document/3617603.aspx

Jalilian, S., & Mahmudova, S. J. (2022). Automatic generation of

test cases for error detection using the extended Imperialist

Competitive Algorithm. Problems of Information Society,

46-54.

Jatain, A., & Mehta, Y. (2014). Metrics and models for software

reliability: A systematic review. In 2014 International

Conference on Issues and Challenges in Intelligent

Computing Techniques (ICICT), 210-214. IEEE.

 doi: 10.1109/ICICICT.2014.6781281.

Jharko, E. (2021). Ensuring the software quality for critical

infrastructure objects. IFAC-PapersOnLine, 54(13), 499-504.

https://doi.org/10.1016/j.ifacol.2021.10.498.

Kazimov, T. H., Bayramova, T. A., & Malikova, N. J. (2021).

Research of intelligent methods of software testing. System

Research & Information Technologies, 4, 42-52.

Kumar, A., & Gupta, D. (2017). Paradigm shift from

conventional software quality models to web based quality

models. International Journal of Hybrid Intelligent

Systems, 14(3), 167-179.

Lee, D. H., Chang, I. H., & Pham, H. (2022). Software reliability

growth model with dependent failures and uncertain

operating environments. Applied Sciences, 12(23), 12383.

Maevsky, D., Kharchenko, V., Kolisnyk, M., & Maevskaya, E.

(2017, September). Software reliability models and

assessment techniques review: Classification issues. In 2017

9th IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems:

Technology and Applications, 2, 894-899.

 doi: 10.1109/IDAACS.2017.8095216.

McCall, J., Paul, K., Richards and F. Walters (1977). Factors in

software quality: concept and definitions of software

quality / Final Technical Report General Electric Company,

1, 25-31, 168.

McConnell, S. (2004). Code complete. Pearson Education. 952.

Mengmeng Z., Xuemei Z., Hoang P. (2015). A comparison

analysis of environmental factors affecting software

reliability, Journal of Systems and Software, 109, 150-160,

https://doi.org/10.1016/j.jss.2015.04.083.

Miguel, J. P., Mauricio, D., Rodríguez, G. (2014). A review of

software quality models for the evaluation of software

products. arXiv preprint arXiv:1412.2977.

Musa, J. D., & Everett, W. W. (1990). Software-reliability

engineering: Technology for the 1990s. IEEE Software, 7(6),

36-43.

Nagar, P., & Thankachan, B. (2012). Application of Goel-

Okumoto model in software reliability measurement. Int. J.

Comp. Appl. Special Issue ICNICT, 5, 1-3.

https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1007/978-1-4471-0653-1_7
https://doi.org/10.1007/978-1-4471-0653-1_7
https://doi.org/10.1016/j.infsof.2015.09.006
https://doi.org/10.1007/978-3-319-07013-1_21
https://ieeexplore.ieee.org/document/159342
https://ieeexplore.ieee.org/document/6835311
https://www.irit.fr/recherches/ICS/projects/twintide/upload/435.pdf
https://www.irit.fr/recherches/ICS/projects/twintide/upload/435.pdf
https://www.iso.org/iso-9001-quality-management.html
https://www.iso.org/iso-9001-quality-management.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.standards.ru/document/3617603.aspx
https://doi.org/10.1016/j.ifacol.2021.10.498
https://doi.org/10.1016/j.jss.2015.04.083

Problems of Information Society, 2024, vol.15, no.1, 42-56

56

Nayyar, A. (2019). Instant approach to software testing:

Principles, applications, techniques, and practices. BPB

Publications, India, 2019, 99-101, 368.

Ndukwe, I. G., Licorish, S. A., Tahir, A., MacDonell, S. G.

(2023). How have views on software quality differed over

time? Research and practice viewpoints. Journal of Systems

and Software, 195, 111524.

Ozcan, A., Çatal, Ç., Togay, C., Tekinerdogan, B., Donmez, E.

(2020). Assessment of environmental factors affecting software

reliability: A survey study. Turkish Journal of Electrical

Engineering and Computer Sciences, 28(4), 1841-1858.

Rashid, J., Mahmood, T., Nisar, M. W. (2019). A study on

software metrics and its impact on software quality.

Technical Journal, University of Engineering and

Technology (UET) Taxila, Pakistan 24(1), 1-14.

Sahu, K., & Srivastava, R.K. (2019). Revisiting software

reliability. Data Management, Analytics and Innovation:

Proceedings of ICDMAI 2018, 1, 221-235.

Sahu, K., & Srivastava, R. K. (2020). Needs and importance of

reliability prediction: An industrial perspective.

Information Sciences Letters, 9(1), 33-37.

https://digitalcommons.aaru.edu.jo/isl/vol9/iss1/5

Smidts, C., Stutzke, M., Stoddard, R. W. (1998). Software

reliability modeling: an approach to early reliability

prediction. IEEE Transactions on Reliability, 47(3), 268-278.

doi: 10.1109/24.740500.

Standard Glossary of Software Engineering Terminology, STD-

729-1991, ANSI/IEEE, 1991

The cost of poor software quality in the us: a 2022 report.

(2023). https://www.it-cisq.org/the-cost-of-poor-quality-

software-in-the-us-a-2022-report/

Van Driel, W. D., Bikker, J. W., Tijink, M. (2021). Prediction of

software reliability. Microelectronics Reliability, 119, 114074.

Van Driel, W. D., Schuld, M., Wijgers, R., Van Kooten, W. E. J.

(2014). Software reliability and its interaction with

hardware reliability. In 2014 15th International Conference

on Thermal, Mechanical and Mulit-Physics Simulation and

Experiments in Microelectronics and Microsystems

(EuroSimE) Ghent, Belgium, 1-8. IEEE.

 doi: 10.1109/EuroSimE.2014.6813774

Yadav, H. B., & Yadav, D. K. (2017). Early software reliability

analysis using reliability relevant software metrics.

International Journal of System Assurance Engineering and

Management, 8, 2097-2108.

 https://doi.org/10.1007/s13198-014-0325-3

Yang, L., Zhang, H., Shen, H., Huang, X., Zhou, X., Rong, G.,

Shao, D. (2021). Quality assessment in systematic literature

reviews: A software engineering perspective. Information

and Software Technology, 130, 106397.

https://doi.org/10.1016/j.infsof.2020.106397

Zhang, X., & Pham, H. (2000). An analysis of factors affecting

software reliability. Journal of Systems and Software, 50(1),

43-56. https://doi.org/10.1016/S0164-1212(99)00075-8

Zhang, X., Shin, M. Y., Pham, H. (2001). Exploratory analysis of

environmental factors for enhancing the software

reliability assessment. Journal of Systems and Software,

57(1), 73-78.

https://digitalcommons.aaru.edu.jo/isl/vol9/iss1/5
https://doi.org/10.1007/s13198-014-0325-3
https://doi.org/10.1016/j.infsof.2020.106397
https://doi.org/10.1016/S0164-1212(99)00075-8

