№1, 2021

Rasim M. Alguliyev, Irada Y. Alakbarova

The use of an e-management system personal data (EMSPD) in an electronic government environment is important for ensuring the security of the state's information space, combating crime in Azerbaijan and abroad, and increasing economic power. The EMSPD formulates general principles to consistently identify privacy risks and manages data responsibly. In order to determine the importance of the EMSPD in assessing social credit on the basis of the behavior and personal data of citizens, the article provides a brief overview of the EMSPD and a general architectural scheme of the system. To ensure the efficient operation and safety of the EMSPD, first of all, the problems of big data collected in the system generated each second are identified. The study proposes using big data technologies for efficient data collection, storage and processing, as well as using distributed data processing technology in this regard. As a result of the study, the importance and future prospects of the EMSPD in the modern e-government environment are identified. The study uses the methods of systematization, classification, generalization and comparative analysis. The research results can be used for more effective management of e-government (pp.67-76).

Keywords:personal data, EMSPD, e-government, big data, social credit, distributed processing.
  • Gangi R.R., Rajesh N.B., Sudhakar N.P., Raviteja B., Rammohanarao K. Tracking objects using rfid and wireless sensor networks // International Journal Of Engineering Science & Advanced Technology, 2012, vol. 2, issue 3, pp. 513 – 517.
  • Məmmədova M., Cəbrayılova Z. Elektron tibb: formalaşması və elmi-nəzəri problemləri, 2019, Bakı: “İnformasiya Texnologiyaları” nəşriyyatı, 350 s.
  • Əliquliyev R.M., Ələkbərova İ.Y. E-dövlət mühitində sosial münasibətlərin analizi: imkanlar və perspektivlər // İnformasiya cəmiyyəti problemləri, 2020, №2, s. 65–79.
  • Əliquliyev R.M., Ələkbərova İ.Y. Elektron dövlət mühitində vətəndaşların sosial kredit sisteminin yaradılmasının konseptual əsasları // İnformasiya cəmiyyəti problemləri, 2018, №2, s. 3-15.
  • Duus R., Cooray M., Page N.C. Exploring Human-Tech Hybridity at the Intersection of Extended Cognition and Distributed Agency: A Focus on Self-Tracking Devices // Frontiers in Psychology, 2018, vol. 9, no. 1432.
  • Алексеев В., Модули Bluetooth, Wi-Fi и NFC производства u-blox для «Интернета вещей», Часть 2 // Беспроводные технологии, 2015, №3, с. 23–24.
  • Hatton C. China social credit: Beijing sets up huge system, 2015, http://www.bbc.com/news/world-asia-china-34592186.
  • General Data Protection Regulation, https://gdpr-info.eu/
  • Núria F., Minguillón A.J. Content Management for E-Learning, 2011, Springer, 215 p.
  • Girdhar Management Information Systems, 2013, New Delhi: Oxford University Press. 328 p.
  • Leslie B.Ph. Boland, M.B., Chang K., Chiang M.F., Daigrepont J., Grant J., Marx J.L. Image Management Systems: What You Need to Know, 2013, https://www.aao.org/eyenet/article/image-management-systems-what-you-need-to-know
  • Шишин И.О. Корпоративный документооборот. Учебное пособие. СПб.: Изд-во СПбГУЭФ, 2008,  80 с.
  • Ehrig Petri Net Technology for Communication-Based Systems: Advances in Petri Nets., 2003, Springer. 323 p.
  • Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995, https://eur-lex.europa.eu/legal-content/en/
  • Directive 97/66/Ec of the European Parliament and of the Council 15 December 1997, https://eur-lex.europa.eu/legal-content/en/
  • European Convention on Human Rights, https://www.echr.coe.int/ Documents/Convention_ ENG.pdf
  • Fərdi məlumatlar haqqında Azərbaycan Respublikasinin Qanunu, http://www.e-qanun.az/framework/19675
  • AbreuP., MariliaK.V., Monteiro C.E. A comparative analysis of simulators for the Cloud to Fog continuum // Simulation Modelling Practice and Theory, 2020, vol. 101, no.10, pp. 20-29.
  • Couper M. Is the sky falling? New technology, changing media, and the future of surveys // Survey Research Methods, 2013, vol. 7, no. 3, pp. 145–156.
  • Suthaharan S. Big Data Classification: Problems and Challenges in Network Intrusion Prediction with Machine Learning // ACM Sigmetrics Performance Evaluation Review archive, 2014, vol. 41, no 4, pp. 70–73.
  • Alguliev R.M., Aliguliyev R.M., Alekperova I.Ya. Cluster approach to the efficient use of multimedia resources in information warfare in Wikimedia // Automatic Control and Computer Sciences, 2014, vol.48, no 2, pp. 97–108.