№2, 2020

APPLICATION OF SENTIMENT ANALYSIS TECHNOLOGIES TO INCREASE THE EFFECTIVENESS OF ADVERTISING-MARKETING ON INTERNET
Kamala K. Hashimova

The article explores the sentiment analysis technologies , identifies key indicators in the analysis of the relationship between consumers and manufacturers. It also demonstrated the effect of  growing volume of Internet resources on mood and sales. We studied differing approaches of different categories of people towards the the same product and studied the interests of customers by tracking their inquiries on social networks through the NetBase Insight Composer platform. In the modern world, the business sector, as well as the advertising and marketing sector, are developing using the capabilities of information technology. Sentiment analysis has a special place in the development of online marketing sites and product sales through social networks, tourism sector, as well as development of other fields. Considering the importance of mood in relations between the parties, mood analysis methods were studied on Internet resources. It became clear that the application  of mood analysis methods played an important role in increasing the effectiveness of advertising and marketing. The study conducted in advertising and marketing field positively  influences the development of the economy. Scientific analysis of topical problems and their solutions, generalization of results and methods and methodologies of systematic approaches were used in preparation of the article. The results of the study show that application perspectives of sentiment analysis technologes must be studied in order to increase the effectiveness on adversiting and marketing on internet. great achievements can be obtained by focusing on local  online shopping sites, broadening buyer audience on advertising and marketing field can lead to development of economy  If its possible to purchase products on local sites , it is possible to prevent the flow of currency from the country, improve the quality of domestic marketand improve the welfare of the population (pp.116-124).

Keywords:advertising and marketing, sentiment analysis, online advertising, social networks, mood, brand product, emotion.
References
  • Lieban What Is Social Sentiment Analysis?, Sentiment Analysis,
    https://www.netbase.com/blog/what-is-social-sentiment-analysis/
  • Pang B., Lee L., Vaithyanathan Sh. Thumbs up? Sentiment Classification using Machine Learning Techniques // Empirical Methods in Natural Language Processing 2002, pp. 79–86.
  • Прохоров А., Керимов А., Сентимент-анализ и продвижение в социальных медиа // Компьютер Пресс, 2012, https://compress.ru/article.aspx?id=23115&iid=1064
  • Omar L., Models Implications for Cultural Analysis in Sociology // Sociological Theory, 2016, vol. 34, no. 4, pp. 287–310.
  • Warren D.T., A General Theory of Emotions and Social Life, 2006, Routledge, 336 p.
  • Sobkowicz P., Kaschesky M., Bouchard G. Opinion mining in social media: Modeling, simulating, and forecasting political opinions in the web // Government Information Quarterly, 2012, vol.29, no.4, pp.470–479.
  • Tront, Marchany R., E-Commerce Security Issues / Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, vol.7, pp.193
  • Гашымова К.К. Branding and its importance for internet advertising / International conference on European science and technology, Munich, 2013, c. 389-393.
  • Geeraerts D. Theories of Lexical Semantics, Oxford University Press, 2009, 384 p.
  • Alguliyev R.M., Aliguliyev R.M., Alakbarova I.Y. Extraction of hidden social networks from wiki-environment involved in information conflict // International Journal of Intelligent Systems and Applications, 2016, vol.8, no.2, pp. 20–27.
  • Alguliev R.M., Aliguliyev R.M. Automatic text documents summarization through sentences clustering // Automation and Information Sciences, 2008, vol.40, no.9, pp.53–63.
  • Premchandani S., Pise M., Wankhede A. Artificial Intelligence and Opinion Mining // Journal of Artificial Intelligence, 2012, vol.3, no.2, pp.102–105.
  • Godbole N., Srinivasaiah M., Skiena S. Large-Scale Sentiment Analysis for News and Blogs / Proceeding of the International Conference on Weblogs and Social Media, 26–28 March, 2007, pp.39–41.
  • Əliquliyev R.M., Ələkbərova İ.Y., Emosional tonallığın analizi metodları haqqında // İnformasiya texnologiyaları problemləri, 2018, №1, 3-15.
  • NetBase, Next Generation Artificial Intelligence, https://www.netbase.com
  • Oatley K. Best Laid Schemes: the Psychology of Emotions. Cambridge University Press, 1992, 445 p.
  • Белов А., Анализ настроений, как торговый инструмент, 2018,
    https://www.cryptocurrency tech/analiz-nastroenij-kak-torgovyj-instrument
  • Симонов П.В., Эмоциональный мозг. M.: Наука, 1981, 166 с.
  • Андреева А.Н., Никитина М.С., “Бренд-менеджмент”, Сентимент-анализ брендов в российской блогосфере как инструмент маркетинговых исследований, http://www.luxurytheory.ru
  • Агаджанов М. Кунсткамера: Е-метр – саентологический прибор для измерения «тэтанов», 2018, https://habr.com/ru/post/417751/
  • Отчет о биткойн-настроениях, https://www.crypto-sentiment.com
  • Эрнст Анализ ощущений и отношение физического к психическому, М., Издательский дом «Территория будущего», 2005, 304 с.