№2, 2021

Yadigar N. Imamverdiyev

Geographic information systems (GIS) are one of the rapidly growing areas of information technology. Geographic information technologies allow combining cartographic and thematic information into a single coordinated structure and ensure the prompt development of multi-level, visual solutions for a wide range of tasks. Spatial data predominates among the data in circulation, but their volume and generation rate increases several times each year, so completely new models and methods based on Big Data are required for the processing of arbitrary geo-data. The paper provides a brief analysis of the current state of GIS and the perspectives for their development based on Big data methods. Brief information about the essence of GIS, their structure and analysis of information in GIS was given. Here, the problems of developing geo- information technologies capable of processing spatiotemporal data in real-time from a network of intelligent geo-sensors were analyzed. An overview of existing solutions and their limitations was provided. Basic research methods are the modeling, comparative and descriptive methods, methods of analogy, analysis and synthesis; the main research approaches are systematic, complex and situational. The results are expected to be useful in the formation of national spatial data infrastructure in the country, the improvement of scientific research in the field of GIS and the development of a set of measures for the security of spatial data (pp.38-51).

Keywords:big data, spatial data, geographical information system, GIS, spatiotemporal analysis.
  • Li S., Dragicevic S., Castro F.A., Sester M., Winter S., Coltekin A., Pettit C., Jiang B., Haworth J., Stein A. Geospatial big data handling theory and methods: a review and research challenges // ISPRS journal of Photogrammetry and Remote Sensing, 2016, vol. 115, pp. 119-133.
  • Ye H., Brown M., Harding J. GIS for all: exploring the barriers and opportunities for underexploited GIS applications // OSGeo Journal, 2014, vol. 13(1), pp. 19-28.
  • Longley P.A.; Goodchild M.F.; Maguire D.J.; Rhind D.W. Geographic information systems and science, 2nd ed., Wiley: Chichester, UK, 2005, 404 p.
  • Fleming S. D., Hendricks M. D., & Brockhaus J. A. The role of GIS in military strategy, operations and tactics. Manual of geographic information systems, 2009, pp. 967-985.
  • Crampton J. W. Collect it all: National security, big data and governance // GeoJournal, 2015, vol. 80(4), pp. 519-531.
  • Shokin Yu.I., Potapov V.P. GIS segodnya: sostoyanie, perspektivy`, resheniya // Vy`chislitel`ny`e tekhnologii, 2015, Tom 20, № 5, s. 175-213.
  • Imamverdiyev Y.N. Biġ data tekhnoloġiyalarının böyük perspektivlari va problemlari // Informasiya jamiyyati problemlari, 2016, №1, s. 23-34.
  • Goodchild M. F. GIS in the era of big data // Cybergeo: European Journal of Geography [Online], 2016, https://journals.openedition.org/cybergeo/27647
  • Wang S., Liu Y., & Padmanabhan A. Open cyberGIS software for geospatial research and education in the big data era // SoftwareX, 2016, vol. 5, pp. 1-5.
  • McLaughlin J., & Nichols S. Developing a national spatial data infrastructure // Journal of Surveying Engineering, 1994, vol. 120(2), pp. 62-76.
  • Nogueras-Iso J., Latre-Abadía M.Á., Muro-Medrano P.R., & Zarazaga-Soria F.J. Building e-Government services over spatial data infrastructures / International Conference on Electronic Government, 2004, pp. 387-391.
  • Craglia M., & Annoni A. INSPIRE: An innovative approach to the development of spatial data infrastructures in Europe / Research and theory in advancing spatial data infrastructure concepts, 2007, pp. 93-105.
  • Maguire D.J., & Longley P.A. The emergence of geoportals and their role in spatial data infrastructures // Computers, environment and urban systems, 2005, vol. 29(1), pp. 3-14.
  • Imran M. Enabling Crowdsourcing in the framework of user-centred SDIs for information management of geographical volunteer content / The 5th International Conference on Information Management, 2019, pp. 7-12.
  • Yamashkin S.A., Radovanović M.M., Yamashkin A.A., Barmin A.N., Zanozin V.V., & Petrović M. D. Problems of designing geoportal interfaces // GeoJournal of Tourism and Geosites, 2019, vol. 24(1), pp. 88-101.
  • Lovett A. A., & Sünnenberg G. Data sources for assessments / Landscape Planning with Ecosystem Services, 2019, pp. 65-75.
  • Cybulski P., & Horbiński T. User experience in using graphical user interfaces of web maps // ISPRS International Journal of Geo-Information, 2020, vol. 9(7), 412.
  • Fu P., & Sun J. Web GIS: principles and applications. Redlands: ESRI Press, 2010, 312 p.
  • Konecny G. Geoinformation: remote sensing, photogrammetry and geographic information systems. CRC Press, 2014, 280 p.
  • Aliyev E.M., Alaskarov E.R. LiDAR verilanlarinin va joghrafi informasiya tekhnoloġiyalarının tabii manshali fövgalada hallarda tatbigi masalalari // Informasiya tekhnoloġiyaları problemlari, 2014, №2, s. 75-85.
  • Luo J., Joshi D., Yu J., & Gallagher A. Geotagging in multimedia and computer vision – a survey // Multimedia Tools and Applications, 2011, vol. 51(1), pp. 187-211.
  • Yu J., Meng X., Yan B., Xu B., Fan Q., & Xie Y. Global Navigation Satellite System‐based positioning technology for structural health monitoring: a review // Structural Control and Health Monitoring, 2020, vol. 27(1), e2467.
  • Niedzielski T., Satellite technologies in geoinformation science: Introduction // Pure and Applied Geophysics, 2014, vol. 171, pp. 779–781.
  • Guo H., Nativi S., Liang D., Craglia M., et al. Big Earth Data science: an information framework for a sustainable planet // International Journal of Digital Earth, 2020, vol. 13(7), pp. 743-767
  • Li X., Zhang X., Ren X., Fritsche M., Wickert J., & Schuh H. Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou // Scientific reports, 2015, vol. 5(1), pp. 1-14.
  • Yue P., & Jiang L. BigGIS: How big data can shape next-generation GIS / The 3rd international conference on Agro-Geoinformatics, 2014, pp. 1-6.
  • Goldberg D., Olivares M., Li Z., & Klein A.G. Maps & GIS data libraries in the era of big data and cloud computing // Journal of Map & Geography Libraries, 2014, vol. 10(1), pp. 100-122.
  • Chen B. Y., Yuan H., Li Q., Shaw S. L., Lam W. H., & Chen X. Spatiotemporal data model for network time geographic analysis in the era of big data // International Journal of Geographical Information Science, 2016, vol. 30(6), pp. 1041-1071.
  • Zhou C., Su F., Pei T., Zhang A., Du Y., Luo B., et al. COVID-19: Challenges to GIS with big data // Geography and Sustainability, 2020, vol.1/ no. 1, pp. 77-87.
  • Eldawy A., & Mokbel M. F. The era of big spatial data: A survey // Foundations and Trends in Databases, 2016, vol. 6(3-4), pp. 163-273.
  • Yao X., & Li G. Big spatial vector data management: a review // Big Earth Data, 2018, vol. 2(1), pp. 108-129.
  • Mbuh M. J., Metzger P., Brandt P., Fika K., & Slinkey M. Application of real-time GIS analytics to support spatial intelligent decision-making in the era of big data for smart cities // EAI Endorsed Transactions on Smart Cities, 2019, vol. 4(9), 15 p.
  • Guo H., Li X., Wang W., Lv Z., et al. An event-driven dynamic updating method for 3D geo-databases // Geo-spatial Information Science, 2016, vol. 19(2), pp. 140-147.
  • Song W.W., Jin B.X., Li S.H., Wei X.Y., Li D., & Hu F. Building spatiotemporal cloud platform for supporting GIS application // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, vol. 2(4), pp. 55-62.
  • Li D., Shen X., & Wang L. Connected Geomatics in the big data era // International Journal of Digital Earth, 2018, vol. 11(2), pp. 139-153.
  • Zhao L., Chen L., Ranjan R., Choo K.K.R., & He J. Geographical information system parallelization for spatial big data processing: a review // Cluster Computing, 2016, vol. 19(1), pp. 139-152.
  • Lv Z., Song H., Basanta-Val P., Steed A., & Jo M. Next-generation big data analytics: State of the art, challenges, and future research topics // IEEE Transactions on Industrial Informatics, 2017, vol. 13(4), pp. 1891-1899.
  • Usmani R.S.A., Hashem I.A.T., Pillai T.R., Saeed A., & Abdullahi A.M. Geographic information system and big spatial data: A review and challenges // International Journal of Enterprise Information Systems (IJEIS), 2020, vol. 16(4), pp. 101-145.
  • Barik R.K., Dubey H., Samaddar A.B., Gupta R.D., & Ray P.K. FogGIS: Fog computing for geospatial big data analytics / IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering, 2016, pp. 613-618.
  • Lee J.-G., Kang M., Geospatial big data: Challenges and opportunities // Big Data Research, 2015, vol. 2(2), pp. 74-81.
  • Guo D., & Onstein E. State-of-the-art geospatial information processing in NoSQL databases // ISPRS International Journal of Geo-Information, 2020, vol. 9(5), 331, 20 p.
  • Kraft R., Birk F., Reichert M., Deshpande A., et al. Efficient processing of geospatial mHealth data using a scalable crowdsensing platform // Sensors, 2020, 20(12), 3456.
  • Bruzza M., Tupia M., & Vancauwenberghe G. State-of-the-art applications of spatial data infrastructure in the provision of e-Government services in Latin America / International Conference on Information Technology & Systems, 2020, pp. 124-140.
  • VoPham T., Hart J.E., Laden F., & Chiang Y.Y. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology // Environmental Health, 2018, vol. 17, Article number: 40, 6 p.
  • Schabus S., & Scholz J. Geographic Information Science and technology as key approach to unveil the potential of Industry 4.0: How location and time can support smart manufacturing / Proc. of the 12th International Conference on Informatics in Control, Automation and Robotics, 2015, Vol. 2, pp. 463-470.
  • Saraee M., & Silva C. A new data science framework for analysing and mining geospatial big data / Proceedings of the International Conference on Geoinformatics and Data Analysis, 2018, pp. 98-102.
  • Yang C., and Huang Q. Spatial cloud computing: a practical approach. CRC Press, 2013, 357 p.