AZERBAIJAN NATIONAL ACADEMY OF SCIENCES
ANALYSIS OF DEMOGRAPHIC INDICATORS BASED ON E-DEMOGRAPHY DATA SYSTEM
Farhad F. Yusifov, Narmina E. Axundova

The introduction of digital technologies, the Internet and social media provides new information and data sources for the study of demographic behavior in human life. The paper studies the analysis of demographic characteristics based on e-demographic data. E-demographic system creation is one of the urgent issues for demographic research, the management of demographic processes, and the study of demographic behavior. The paper investigates the existing international experience in the field of e-demography, analyzes the current state of research in the field of creating a single population register. For the creation of an e-demographic system, the integration of public registers in various fields into a single platform through a personal identification number has been proposed. The paper analyzes demographic characteristics based on e-demographic data. In the carried experiment the analyses of demographic characteristics of graduates have been examined who studied abroad. In the paper, we use the K-means algorithm to analyze demographic data. Demographic analysis was conducted according to the age, sex, marital status, education level, specialty, study country and other indicators of the graduates. E-demography creates new opportunities for social research and population data monitoring. The establishment of an e-demographic system will provide the population statistics, online census monitoring, in-depth analysis of demographic processes and the study of demographic behavior (pp.70-82).

Keywords:e-government, e-demography, population register, migration, demographic characteristics, demographic research.
DOI : 10.25045/jpis.v12.i2.05
References
  • Alguliev R.M., Aly`guliev R.M., Yusifov F.F., Alekperova I.Ya. Formirovanie e`lektronnoj demografii kak e`ffektivnogo instrumenta soczial`ny`kh issledovanij i monitoringa danny`kh o naselenii // Voprosy` gosudarstvennogo i municzipal`nogo upravleniya. Public administration issues, «Vy`sshaya shkola e`konomiki» (NIU VShE`), 2019, № 4, c. 61–86.
  • Shherbakov A.I., Mdinaradze M.G., Nazarov A.D., Nazarova E.A. Demografiya, 2017, https://mgimo.ru
  • Aliguliyev R.M., Yusifov F.F. Milli e-demogarfiya sisteminin yaradılmasının arkhitektur prinsiplari // Informasiya Jamiyyati Problemlari, 2021, №1, 3–17.
  • Poulain M., Herm A. Central Population Registers as a Source of Demographic Statistics in Europe, Population (English Edition), 2013, Vol.68(2), pp.183-212.
  • Emilio Zagheni is new MPIDR director, 2018, https://www.demogr.mpg.de/en/ news_press/news/news/emilio_zagheni_is_new_mpidr_director_5556.htm
  • Billari F., Zagheni E. Big data and population processes: a revolution? In: Petrucci A., Verde R. (eds.) Statistics and Data Science: new challenges, new generations / Proceedings of the Conference of the Italian Statistical Society, Firenze University Press, Florence (Italy), 28–30 June 2017, pp. 167–178.
  • Zagheni E. Data Science, Demography and Social Media: Challenges and Opportunities, 2017, https://pdfs.semanticscholar.org/presentation/
  • Beduschi A. The Big Data of International Migration: Opportunities and Challenges for States under International Human Rights Law // Georgetown Journal of International Law, 2018, 49(4), pp.981-1017.
  • Alburez-Gutierrez D., Aref S., Gil-Clavel S., Grow A., Negraia D.V. Demography in the Digital Era: New Data Sources for Population Research, 2019. Book of short Papers SIS2019, https://osf.io/preprints/socarxiv/24jp7
  • Boas, T.C., Christenson, D.P., Glick, D.M.: Recruiting large online samples in the United States and India: Facebook, Mechanical Turk, and Qualtrics, Political Science Research and Methods, 2018, pp.1–19.
  • Pham H.K., Rampazzo F., Rosenzweig L.R. Online Surveys and Digital Demography in the Developing World: Facebook Users in Kenya / MIT Conference on Digital Experimentation, Cambridge, MA, 2018
  • Cesare N., Lee H., McCormick T. et al. Promises and Pitfalls of Using Digital Traces for Demographic Research // Demography, 2018, vol. 55, no 5, pp. 1979–1999.
  • Rama D., Mejova Y., Tizzoni M., Kalimeri K. and Weber I. Facebook Ads as a Demographic Tool to Measure the Urban-Rural Divide / WWW '20: Proceedings of The Web Conference 2020, April 2020, pp. 327–338, https://doi.org/10.1145/3366423.3380118
  • Feehan, D. M., Cobb, C. Using an Online Sample to Estimate the Size of an Offline Population // Demography, 2019, 56(6), 2377–2392. https://doi.org/10.1007/s13524-019-00840-z
  • Pötzschke S., Braun M. Migrant Sampling Using Facebook Advertisements: A Case Study of Polish Migrants in Four European Countries // Social Science Computer Review, 2017, vol. 35(5), pp. 633-653. https://journals.sagepub.com/doi/full/10.1177/0894439316666262
  • Yildiz D., Munson J., Vitali A. and et al. Using Twitter data for demographic research // Demographic Research, 2017, vol. 37. Article 46, pp. 1477–1514.
  • Monti A., Drefahl S., Mussino E., Harkönen J. Over Coverage in Population Registers and What We Can Do About It // Population Studies, 2020, vol. 74(3), 451–469.
  • Gil-Clavel S., Zagheni E. Demographic Differentials in Facebook Usage around the World / Proceedings of the Thirteenth International AAAI Conference on Web and Social Media (ICWSM 2019), 2019, pp. 647–650.
  • Billari F., D’Amuri F., Marcucci J. Forecasting births using google, Annual Meeting of the Population Association of America, 2013, New Orleans, LA.17.
  • Ginsberg J., Mohebbi M.H., Patel R.S., Brammer L., Smolinski M.S., Brilliant L. Detectinginfluenza epidemics using search engine query data // Nature, 2008, vol. 457, no. 7232, pp. 1012–1014.
  • Gangi R.R., Rajesh N.B., Sudhakar N.P., Raviteja B., Rammohanarao K. Tracking objects, using RFID and wireless sensor networks // International Journal of Engineering Science & Advanced Technology, 2012, vol. 2, issue 3, pp. 513–517.
  • Fire M., Elovici Y. Data Mining of Online Genealogy Datasets for Revealing Lifespan Patterns in Human Population // ACM Transactions on Intelligent Systems and Technology, 2015, vol. 6, issue 2, pp.1–24.
  • Askitas N., Zimmermann K. F. The internet as a data source for advancement in social sciences // International Journal of Manpower, 2015, 36(1), 2–12.
  • Scholz R., Kreyenfeld M. The register-based census in Germany: Historical context and relevance for population research // Comparative Population Studies, 2016, 41(2), 175–205.
  • Puhachova M.V., Gladun O.M., Vynohradova M.V. Using Electronic Register Systems in Population Censuses // Statistics of Ukraine, 2020, vol 90, No 4, pp. 32-44.
  • В России будет создан реестр населения. Российская газета – Федеральный выпуск № 122(7585), https://rg.ru/2018/06/06/v-rossii-budet-sozdan-reestr-naseleniia.html
  • Careja R., Bevelander P. Using Population Registers for Migration and Integration Research: Examples from Denmark and Sweden // Comparative Migration Studies, 2018, vol. 6, no 1, pp. 6-19.
  • Vassil K. Estonian e-Government Ecosystem: Foundation, Applications, Outcomes. World Development report, 2016, 30 p.
  • Lyngstad T.H., Skardhamar T. Nordic register data and their untapped potential for criminological knowledge // Crime and Justice, 2011, vol. 40(1), pp. 613-645.
  • Customer Segmentation Classification, https://www.kaggle.com/kaushiksuresh147/customer-segmentation