№1, 2024
Intelligent agricultural applications are gaining momentum, promising 24-hour monitoring of soil and crops, equipment productivity, storage conditions, plant and animal behaviour, energy consumption levels, etc. Combining different sensors, connected devices and agricultural facilities, IoT platform optimizes the development of intelligent agricultural systems and provides maximum flexibility, for example, for individual architectural design. This is a huge advantage for companies or farmers that plan to steadily expand their ecosystem of the IoT devices and over time introduce new intelligent agricultural solutions. Managing several solutions and upgrading them on a single IoT platform ensures rational operation and predictable results. One of such intellectual solutions is offered in this article on the example of the project "Smart greenhouse" using wireless IoT technologies (pp.3-9).
- Abbas, Y., B., Zolfaghari, A., Azmoodeh, A., Dehghantanha, H., Karimipour, E., Fraser, A.G., Green, C., Russell, E., Duncan (2021). A review on security of smart farming and precision agriculture: security aspects, attacks, threats and countermeasures. Applied Sciences. http://dx.doi.org/10.3390/app11167518
- Addicott, J. E. (2019). The Precision Farming Revolution: Global Drivers of Local Agricultural Methods. Palgrave Macmillan, 2019.
- Agricultural Internet of Things and Decision Support for Precision Smart Farming. Elsevier, 2020. http://dx.doi.org/10.1016/c2018-0-00051-1
- Beloev, I., D., Kinaneva, G., Georgiev, G., Hristov, P., Zahariev (2021). Artificial intelligence-driven autonomous robot for precision agriculture. Acta Technological Agriculture 24(1), 48–54. doi: 10.2478/ata-2021-0008
- Camilo, L., A., Favela-Contreras, A., Aguilar-Gonzalez, L. C., Félix-Herrán, L., Orona (2021). Energy-efficient wireless communication strategy for precision agriculture irrigation control. Sensors 21(16). http://dx.doi.org/10.3390/s21165541
- Carlos, P. E., S. Fuentes (2020). Editorial: Special Issue “Emerging sensor technology in agriculture”. Sensors 20(14): 3827. doi: 10.3390/s20143827
- Chandrakant, Sh., P. (2019). Testing and monitoring agricultural soil using precision farming. International Journal for Research in Applied Science and Engineering Technology 7(7). http://dx.doi.org/10.22214/ijraset.2019.7063
- Eduardo, P. J., S. Bimonte, Gil De Sousa, J. C., Corrales (2019). Data-centric UML Profile for wireless sensors. International Journal of Agricultural and Environmental Information Systems 10(2), 21–48. doi: 10.4018/ijaeis.2019040102
- Gabriele, B., R., Khosla, A., Mouazen, O., Naud, A., Castrignano (2020). Agricultural Internet of Things and Decision Support for Precision Smart Farming. Elsevier Science & Technology Books, 2020.
- Gang, F. L., Z. B., Liu, H. L., Li, C. D., Gu, M. L., Dai (2021). Application of wireless sensor network for M2M in precision fruits. Advanced Materials Research 267, 482–87. doi: 10.4028/www.scientific.net/amr.267.482
- Giorgia, B. D., Bentivoglio, M., Belletti, A., Finco (2020). Measuring a farm's profitability after adopting precision agriculture technologies: a case study from Italy. ACTA IMEKO 9(3). http://dx.doi.org/10.21014/acta_imeko.v9i3.799
- Irfan, A., N., Bafdal, E., Suryadi, A., Bono (2020). Greenhouse monitoring and automation using Arduino: a review on precision farming and Internet of Things (IoT). International Journal on Advanced Science, Engineering and Information Technology 10(2). http://dx.doi.org/10.18517/ijaseit.10.2.10249
- Karim, F., M., Abid, N., Ben Hadj-Alouane (2020). Enhancing energy saving in smart farming through aggregation and partition aware IoT routing protocol. Sensors 20(10). http://dx.doi.org/10.3390/s20102760.
- Katalin, T. G. (2012). Economic aspects of an agricultural innovation – precision crop production. Applied Studies in Agribusiness and Commerce 6(1-2), 51–57.
- Khalid, H., I. U., Din, A., Almogren, N., Islam (2020). An energy efficient and secure IoT-based WSN framework: an application to smart agriculture. Sensors 20(7), 2081. doi: 10.3390/s20072081
- Niccolò, L., A., Affinito, G., Bonanomi (2020). Introducing Evja – “Rugged” intelligent support system for precision farming. ACTA IMEKO 9(2). http://dx.doi.org/10.21014/acta_imeko.v9i2.795
- Nicolas, D. R., N., Dercas, N. V., Spyropoulos, E., Psomiadis (2019). Remotely sensed methodologies for crop water availability and requirements in precision farming of vulnerable agriculture. Water Resources Management 33(4), 499–519. doi: 10.1007/s11269-018-2161-8
- Robert, F., S. M., Swinton, El Benni N., Walter A. (2019). Precision farming at the nexus of agricultural production and the environment. Annual Review of Resource Economics 11(1). http://dx.doi.org/10.1146/annurev-resource-100518-093929
- Sankar, R. C., S., Ravimaran, R. S., Krishnan, E. G., Julie, Y. H., Robinson, R., Kumar, L. H., Son, Ph. H., Thong, N. Q., Thanh, M., Ismail (2020). Internet of Green Things with autonomous wireless wheel robots against green houses and farms. International Journal of Distributed Sensor Networks 16(6). http://dx.doi.org/10.1177/1550147720923477
- Selim, H. Md., M. H., Rahman, M. S., Rahman, A. S. M., Sanwar Hosen, C., Seo, G. H. Cho (2021). Intellectual property theft protection in IoT based precision agriculture using SDN. Electronics 10(16), 1987.doi: 10.3390/electronics10161987
- Simon, S., D, Culibrk, M., Bandecchi, W., Gross, W., Middelmann (2021). Soil monitoring for precision farming using hyperspectral remote sensing and soil sensors. Automatisierungstechnik 69(4), 325–35. doi:10.1515/auto-2020-0042
- Takoi, T.K., J. S., Durrence, G., Vellidis (2009). Precision farming practices. IEEE Industry Applications Magazine 15(2), 34–42. doi: 10.1109/mias.2009.931816
- Zecha, C. W., J., Link, W., Claupein (2013). Mobile sensor platforms: categorization and research applications in precision farming. Journal of Sensors and Sensor Systems 2(1), 51–72. doi:10.5194/jsss-2-51-2013
- Rzaev, R. R. (2016). Analytical Decision Support in Organizational Systems. Saarbruchen (Germany), Palmerium Academic Publishing (in Russian)
- Rzayev, R. R. (2012). Neuro-fuzzy Modeling of Economic Behavior. Moscow, Lambert Academic Publishing (in Russian)
- Kussul, E., Baydyk, T., Curtidor, A., Herrera, G. V. (2023). Modeling a system with solar concentrators and thermal energy storage. Problems of Information Society 14(2), 15–23.