№2, 2025
Multiple Sclerosis is a chronic autoimmune disease characterized by heterogeneous clinical manifestations.. In recent years, the application of artificial ıntelligence methods, particularly machine learning and deep learning techniques, has opened new opportunities for multiple sclerosis management. In this study, the potential of artificial ıntelligence for multiple sclerosis diagnostics, treatment and prognosis is estimated.The research found that RNN models excel in long-term disease progression modeling by effectively capturing temporal sequences. Random Forest and XGBoost models accurately predict relapse risks and the probability of disease progression. The MindGlide platform accelerates MRI analysis, while CDSS facilitates the optimization of personalized treatment decisions. Biomarker-based models offer new avenues for early detection of the disease at the subclinical stage. Overall, hybrid model approaches integrating clinical, radiological, and molecular data present a promising pathway for personalized multiple sclerosis management and the development of early intervention strategies (pp.70-85).
- Bento, M., Fantini, I., Park, J., Rittner, L., & Frayne, R. (2022). Deep learning in large and multi-site structural brain MR imaging datasets. Frontiers in Neuroinformatics, 15, 805669. https://doi.org/10.3389/fninf.2021.805669
- Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 223–230. https://doi.org/10.1016/j.bpsc.2017.11.007
- Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785
- Cross, H. R., & Salter, A. L. (2024). Artificial intelligence for multiple sclerosis management: Challenges in a new era. Multiple Sclerosis and Related Disorders, 86, 105611. https://doi.org/10.1016/j.msard.2024.105611
- Gros, C., De Leener, B., Badji, A., Maranzano, J., Eden, D., Dupont, S. M., ... & Cohen-Adad, J. (2019). Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage, 184, 901–915.
- https://doi.org/10.1016/j.neuroimage.2018.09.081
- Kuceyeski, A., Monohan, B., & Gauthier, S. A. (2020). Applications of machine learning to the analysis of multiple sclerosis clinical data. Frontiers in Neurology, 11, 620. https://doi.org/10.3389/fneur.2020.00620
- Louapre, C., Edan, G., & Bodini, B. (2022). Artificial intelligence in the diagnosis and prognosis of multiple sclerosis: Current status and future perspectives. Multiple Sclerosis and Related Disorders, 65, 104004. https://doi.org/10.1016/j.msard.2022.104004
- Mammadova, M., Jabrayilova, Z. (2019). Electronic medicine: Formation and scientific-theoretical problems. Baku: “Information Technologies” Publishing House. https://ict.az/uploads/files/E-medicine-monograph-IIT-ANAS.pdf
- Mammadova, M., Bayramov, N., Jabrayilova, Z., Manafli, M., & Huseynova, M. (2024). Decision support system for the hepatocellular carcinoma diagnosis. Azerbaijan Medical Journal, (4), 163–169. https://doi.org/10.34921/amj.2024.4.026
- Mammadova, M., Jabrayilova, Z., Karayeva, L., & Ahmadova, A. (2022, October 12–14). Prediction of hepatocellular carcinoma using a machine learning. In The 16th IEEE International Conference Application of Information and Communication Technologies (AICT-2022). Washington DC. https://doi.org/10.1109/AICT55583.2022.10013575
- Nabizadeh, F., Masrouri, S., Ramezannezhad, E., Ghaderi, A., Sharafi, A. M., Soraneh, S., & Naser Moghadasi, A. (2022). Artificial intelligence in the diagnosis of multiple sclerosis: A systematic review. Multiple Sclerosis and Related Disorders, 59, 103673. https://doi.org/10.1016/j.msard.2022.103673
- Rocca, M. A., Battaglini, M., Benedict, R. H. B., De Stefano, N., Geurts, J. J. G., Henry, R. G., ... & Filippi, M. (2020). Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology, 95(8), 336–348. https://doi.org/10.1212/WNL.0000000000010026
- Wingerchuk, W. M., & Weinshenker, B. G. (2008). Multiple sclerosis: Epidemiology, genetics, classification, natural history, and clinical outcome measures. Neuroimaging Clinics of North America, 18(4), 585–596. https://doi.org/10.1016/j.nic.2008.06.001
- Zhang, Y., Wang, J., & Wu, W. (2022). Hybrid deep learning models for early prediction of multiple sclerosis progression. IEEE Access, 10, 125634–125646. https://doi.org/10.1109/ACCESS.2022.3220421