№2, 2021

Irada Y. Alakbarova

To increase the economic power of the state, ensure information security and eliminate social inequality, the determination, and evaluation of the citizen's role in society are very important. By using innovative information technology in many countries, government agencies and individual companies attempt to evaluate citizens according to trust, reputation, and behavior using personal data. This assessment is called social credit. To achieve success in socio-economic and many other issues, banking systems, insurance companies, government agencies use analytical systems that evaluate the social credit of citizens and companies. The paper investigates and classifies the methods of assessing social credit. In the study, the comparative analysis method has been used and the interaction of the social credit system with the electronic demographic system has been proposed to obtain more accurate results while assessing social credit. The proposed approach can be important for better governance of society, ensuring social protection and satisfaction of citizens in the e-government environment (pp.108-118).

Keywords:social credit, e-demography, e-government, personal data, assessment, demography, big data.
  • Ferreira F.A.F., Esperanca J.P., Xavier M.A.S., Costa R.L. Perez-Gladish B. A socio-technical approach to the evaluation of social credit applications // Operational Research Society, 2019, vol. 70, Issue 10, pp. 1801–1816.
  • Kostka G., Antoine L. Fostering Model Citizenship: Behavioral Responses to China's Emerging Social Credit Systems // Policy and Internet, 2019, https://www.papers.ssrn.com/sol3/papers.cfm?abstract_id=3305724
  • YanZ. China's Social Credit System: A Primer // The Journal of International and Public Affairs, 2018, vol. 1, no. 1, https://www.jipasg.org/posts/2018/9/6/introduction-to-chinas-social-credit-system
  • Hatton C. China social credit: Beijing sets up huge system, 2015, http://www.bbc.com/news/world-asia-china-34592186
  • Chen Y., Cheung A.S.Y. The Transparent Self Under Big Data Profiling: Privacy and Chinese Legislation on the Social Credit System // Comparative Law, 2017, vol. 12, no. 2, pp. 356–378.
  • Chinese Social Credit System (I): what it is – and what it isn't, https://www.polikracia.com/the-chinese-social-credit-system/
  • Planning Outline for the Construction of a Social Credit System (2014-2020), https://www.chinacopyrightandmedia.wordpress.com/2014/06/14/planning-outline-for-the-construction-of-a-social-credit-system-2014-2020/
  • Aliguliyev R.M., Alakbarova I.Y. Elektron dövlat mühitinda vatandashların sosial krediti sisteminin yaradılmasının konseptual asasları // Informasiya jamiyyati problemlari, 2018, №2, s. 3–15.
  • Síthigh D.M., Siems M. The Chinese social credit system: A model for other countries, European University Institute Department of Law, 2019, 39 p.
  • Ant Financial Unveils China's First Credit-Scoring System Using Online Data, 2018, https://www.alibabagroup.com/en/news/article?news=p150128
  • Ahmed Cashless Society, Cached DataSecurity Considerations for a Chinese Social Credit System / January 24, 2017, https://www.citizenlab.ca/2017/01/cashless-society-cached-data-security-considerations-chinese-social-credit-system/
  • Demirgüç-Kunt A., Levine R. Finance and inequality: Theory and evidence // Financial Econom, 2009, vol.1, no.1, pp. 287–318.
  • Yu L., Li X., Tang L., Zhang , Kou G. Social credit: a comprehensive literature review // Financial Innovation, 2015, vol. 1, no. 6, pp. 2–18.
  • Brown M, Zehnder C. The emergence of information sharing in credit markets // Financ Intermed, 2010, vol.19, no. 2, pp. 255–278.
  • Jarrow R, Xu L. Credit rating accuracy and incentives // Credit Risk, 2010, vol. 6, no. 3, 1–19.
  • Barnaud C., Bousquet F., Trebuil G. Multi-agent simulations to explore rules for rural credit in a highland farming community of Northern Thailand // Ecol Econ, 2008, vol. 66, no. 4, pp.615–627.
  • Blanco A., Pino-MejíAs R., Lara J., Rayo S. Credit scoring models for the microfinance industry using neural networks: evidence from Peru // Exp. Syst. Appl. vol.40, no. 1, pp. 356–364.
  • Yim J., Mitchell H. Comparison of country risk models: hybrid neural networks, logit models, discriminant analysis and cluster techniques // Exp Syst Appl, 2005, vol. 28, no. 1, pp. 137–148.
  • Lean Y., Xinxie L., Ling T., Zongyi Z., Gang K. Social credit: A comprehensive literature review // Financial Innovation, 2015, no. 6, onlayn: https:// www.link.springer.com/article/ 10.1186/s40854-015-0005-6#citeas
  • Alguliev R.M., Aly`guliev R.M., Yusifov A., Alekperova I.Ya. Formirovanie czifrovoj demografii kak odin iz vazhny`kh voprosov v czifrovom gosudarstve // Voprosy` gosudarstvennogo i municzipal`nogo upravleniya. Public administration issues, «Vy`sshaya shkola e`konomiki» (NIU VShE`), № 4. 2019, c. 61–86.
  • Zagheni E., Weber I. Demographic research with non-representative internet data // International Journal of Manpower, 2015, vol. 36, no. 1, 2015, pp. 13–25.
  • Zagheni E. Data Science, Demography and Social Media: Challenges and Opportunities, 2017, https:// pdfs.semanticscholar.org/presentation/
  • Personal data empowerment. Time for a fairer data deal?, 2015, The National Association of Citizens Advice Bureaux. 56 p.
  • Thomas H. Big Data in Big Companies. Davenport and SAS Institute Inc. 2013, 31 p.
  • Глущенко Н. Слишком большие данные: сколько информации хранится в интернете? 2017, https://www.ain.ua/special/skolko-vesit-internet/
  • Gangi R.R., Rajesh N.B., Sudhakar N.P., Raviteja B., Rammohanarao K. Tracking objects, using rfid and wireless sensor networks // International Journal of Engineering Science & Advanced Technology, 2012, vol. 2, issue 3, pp. 513–517.
  • Redondi , Chirico M., Borsani L., Cesana M., Tagliasacchi M. An integrated system based on wireless sensor networks for patient monitoring, localization and tracking // Ad Hoc Networks, 2013, vol. 11, issue 1, pp. 39–53.
  • Kachagina O.V. Osnovy` demografii: osnovy` teorii i prakticheskie zadaniya: Uchebnoe posobie, 2016, Ul`yanovsk: UlGU, 129 s.
  • Borisov V.A. Demografiya, 2001, M., Izdatel`skij dom “NOTABENE”, 272 s. United Nations Global Pulse's projects? On-line: https://www.unglobalpulse.org/projects
  • Andrichenko L.V., Meshheryakova M.An. Informaczionny`e registry` kak e`ffektivnoe sredstvo sbora i monitoringa danny`kh o naselenii // Zhurnal rossijskogo prava, №8, 2012, s 16–40.
  • How Credit Works, https://www.selflender.com/how-credit-works/what-affects-credit-score
  • Lyngstad T.H., Skardhamar T. Nordic register data and their untapped potential for criminological knowledge // Crime and Justice, 2011, vol. 40(1), pp. 613–645.
  • Alakbarova I.Y. Elektron dövlat mühitinda fardi malumatların muhafizasi problemlari / “Informasiya tahlukasizliyinin aktual multidissiplinar elmi-praktiki problemlari” IV Respublika konfransı.  Bakı, 14 dekabr, 2018. sah. 64–67.
  • Diestel R. Graph Theory, 2000, Springer-Verlag New York, 322 p.
  • Poltavtseva M. A., Pechenkin, A. I. Intelligent data analysis in decision support systems for penetration tests // Automatic control and computer sciences, 2017, vol. 51, Issue 8, 985–991.
  • Chaudhuri S., Dayal U. An overview of data warehousing and OLAP technology // ACM SIGMOD, 1997, vol. 26(1), 65–74.